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ABSTRACT Mathematics teachers frequently provide concrete manipulatives to students during

instruction; however, the rationale for using certain manipulatives in conjunction with concepts

may not be explored. This article focuses on area models that are currently used in classrooms to

provide concrete examples of integer and binomial multiplication. The innovation of combining the

representations for negative numbers with both algebra tiles and Algeblocks is provided, with a

mathematical justification for its development. Teachers’ effective integration of tools such as these

in mathematics instruction can help students develop conceptual understanding and procedural

fluency.

KEYWORDS integer multiplication, binomial multiplication, area model, algebra,

negative integer multiplication

In mathematics education, concrete manipulatives and
visual materials are often provided to aid students” ex-
ploration and understanding of mathematical concepts.
Though hands-on models have been espoused for al-
most a century (see Sowell, 1989 for a historical synop-
sis), research related to teachers making informed
decisions about which ones to select is still limited. Ertle
(2006) demonstrates the importance of bringing this
awareness to light; more specifically, the need for knowl-
edge of how, when, and why to use manipulatives. Text-
books and curricular materials often include concrete
manipulatives and visual materials, and these resources
include the “how” and “when.” Unfortunately, descrip-
tions of “why” they should be used, in a mathematical
sense, are absent. In this article, the innovation of com-
bining the representations for negative numbers with
both algebra tiles and Algeblocks is provided, with a
mathematical justification for its development.

In Principles to Action (National Council of Teachers
of Mathematics (NCTM), 2014), NCTM sets forward six
guiding principles for school mathematics. This article
targets the principle of Tools and Technology, described
in this way: “An excellent mathematics program inte-
grates the use of mathematical tools and technology as

essential resources to help students learn and make
sense of mathematical ideas, reason mathematically, and
communicate their mathematical thinking” (p. 78). We
outline area models that are currently used during in-
struction as tools to provide concrete examples of integer
and binomial multiplication. Then, we posit an emergent
model and a mathematical justification for why we have
developed it.

The purpose of this article is to provide an essential
resource for integer and binomial multiplication that
is—drawing from Doll’s (1993) four R’s of rigor, rich-
ness, relations, and recursion —mathematically rigorous,
conversationally rich, filled with relations among math-
ematical concepts, and can move recursively from whole
numbers to integers to binomials. Teachers can use the
tools to facilitate complex conversations (Pratt, 2008)
where the teacher listen for differences (Davis, 1997) to
draw out multiple perspectives and representations, and
enact effective teaching practices (NCTM, 2014). First,
we provide an overview of area models used to explore
multiplication in mathematics education, specifically fo-
cusing on base-10 blocks, algebra tiles, and Algeblocks.
We then problematize the overgeneralization of algebra
tiles when expanding from the set of whole numbers to
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the set of integers. Next, a resolution of this problem is
offered, with a demonstration of how to make the expan-
sion more coherent across the set of integers. Finally, we
conclude with a series of activities that can be adapted
by mathematics educators to model this resolution and
utilize area models in a mathematically rich manner.

Area Models

Area models generate opportunities for students to make
rich connections between operations on numbers and their
algebraic representations (Richardson, Pratt, & Kurtts,
2010; Pratt, Richardson, & Kurtts, 2011). Area models can
be used in conjunction with the concepts of multiplication
of whole numbers, integers, and polynomials (Wheatley,
1998). The area models of the products (11) (12) and (x + 1)
(x+2), as described in Richardson, Pratt, and Kurtts (2010),
reveal structural similarities (See Figure 1). Base-10 blocks
are used to represent 11 as (10 + 1) and 12 as (10 + 2), while
Algeblocks are used to model (x + 1) (x + 2). By placing the
structures of these two products as areas side-by-side, con-
versations around the meanings of base-10 to base-x can
be explicitly guided to facilitate understandings of the
place values associated with the products of 10% + 2(10) +
1(10) + 2 and x2+2x + x + 2, respectively. This is an example
of what Jacobs, Franke, Carpenter, Levi, and Battey (2007)
would consider a task that elicits algebraic reasoning as
generalized arithmetic.

In the right diagram of Figure 1, teachers could elect
to use algebra tiles in the place of Algeblocks, and the
structural similarities between (11) (12) and (x + 1) (x +2)
would still be evident. There is minimal difference in the
representation of algebra tiles and Algeblocks when mod-
eling operations involving the set of whole numbers.
However, when the values shift to integers, representa-
tions of negative values create a significant difference in
the models. This difference is important for those who
are teaching integer and binomial multiplication while
modeling the operations using manipulatives. The delin-
eation between algebra tiles and Algeblocks is an impor-
tant conversation in which teachers should engage to
provide more in-depth understandings of the mathemat-
ical concepts these tools represent. We agree with Ertle
(2006) that this awareness can enhance teachers” peda-
gogical content knowledge.

Algebra Tiles

Algebra tiles have become the most prolific set of con-
crete manipulatives with which to explore integer and
binomial multiplication. Bruner (1965) used them in his
interviews with eight year olds, when they were made
from pieces of wood. The shapes of the tiles displayed
different areas. Since then, they have been commercially
reproduced by different manufacturers, and more re-
cently developed into virtual models as apps (e.g., Alge-
bra Tiles, HMH FUSE Algebra 1) and applets (e.g.,, NCTM
[uminations, National Library of Virtual Manipula-

Product of (11) (12)
[represented as (10 + 1) (10 + 2)]

(TTTTTTTTTI000]

=100+20+10+2
=100+ 30+ 2
=132

Product of (x + 1) (x + 2)

[1]

=
1=

x |EN{EN

=X2+2X+ 11X+ 2
=Xx2+3x+2

Figure 1. A comparison of the models of (11) (12), using base -10 blocks, to (x + 1) (x + 2), using Algeblocks.
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tives). The original algebra tiles were created by Bruner
(1965) to assist young learners with constructing area
models involving operations on whole numbers and al-
gebraic expressions within the set of whole numbers. Al-
gebra tiles were then expanded to include the set of
integers. Now, the tiles are two-sided, with each side
showing a different color. On one side, the color repre-
sents a positive area and is varied (usually blue, green,
or yellow, depending on the manufacturer or technical
developer) based on the dimensions of the piece. Con-
sistently across all models is the other side, which is red;
this represents a negative area—no matter the dimen-
sions of the piece—and signifies that the piece’s area is
the opposite of its positive value.

Modeling addition and subtraction with algebra tiles
requires setting the tiles on a surface with the color fac-
ing up to represent positive or negative values, and then
collecting like terms. Positive pieces are placed together;
negative pieces are also placed together. Any like terms
that are opposites (additive inverses) are lined up then
“zeroed out” (commonly referred to as zero pairs). The
resulting collection is summed to find the solution. For
example, Figure 2 models —4 + 2 using algebra tiles.

For multiplication, algebra tiles are oriented to show
the area of a rectangle using a singular base times height
mat. The orientation of how the tiles are placed to show
area varies based on the manufacturer. All models de-
termine rectangular area using base times height, but
some show the base across the top while others show
base across the bottom. The height is consistently ori-
ented to the left. For example, Figure 3 shows the oper-
ation of (-2) (+3) with the height of -2 on the left and base
as +3 across the bottom. The resulting product is —6 be-
cause of the rule that a positive number times a negative
number results in a negative number. Alternatively, the
height could be +3 on the left and the base as -2 across
the bottom, and the result would be the same.

Figure 2. Algebra tiles to model the integer addition of
-4 + 2, showing the resulting sum of 2.

Due to the way algebra tiles are placed on this
singular base times height mat, there are limitations
regarding students’ conceptual understanding of the
mathematical reason for flipping pieces over. As mod-
eled in Figure 3, the rule for multiplying a negative num-
ber by a positive number is what dictates flipping the
pieces. Engaging in why they are flipped beyond this rule
is often not examined or discussed. Teachers are told to
flip them to represent their opposites, and in turn, students
are told the same. The how and when are discussed, but
not the why.

Algeblocks
In contrast to algebra tiles, the creators of Algeblocks ap-
proached the representation of negative values differ-
ently. The pieces do not have opposite sides displaying
different colors. Instead, the pieces are placed on one of
three mats (basic mat, sentence mat, and quadrant mat)
that accompany the set of blocks to model addition/sub-
traction, solving equations, or multiplication/division,
respectively. The distinction made for positive versus
negative values has to do with where the pieces are
placed on the mat (there is a “negative side” and a “pos-
itive side”), rather than a difference in color.
Mathematically, the mats are concrete representations
of number lines. For example, the task of simplifying —4
+ 2 can be shown by placing four units on the negative
side of the basic mat and two units on the positive side
(Figure 4). Additive inverses are placed alongside each
other on opposite sides of the mat, and then removed.
What remains is two units on the negative side, showing
the solution of -2. A discussion of the Inverse Property
of Addition can be included during instruction. Though

[
[
EN/ENEN

Figure 3. Algebra tiles to model the integer multiplication
of (-2) (+3), where the product -6 is represented by the
filled in area.
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this is similar to the use of algebra tiles, the difference
occurs when translating this model to a number line to
compare the meanings of positive and negative values.

Moving from the basic mat to the quadrant mat,
Algeblocks can be used to model multiplication and
division of integers in a different way than algebra tiles.
The quadrant mat is a representation of the coordinate
plane, and the factors are placed on the x-axis and y-axis
to show that base times height produces a rectangular
solution. While the Algeblocks and algebra tiles both
conceptualize multiplication using area models, the
quadrant mat compared to the singular base times
height mat is what sets them apart. For example, using
Algeblocks and the quadrant mat to model the operation
(-2) (+3) as shown in Figure 3, -2 is placed on the x-axis
to the left the origin, and +3 is placed on the y-axis above
the origin (See Figure 5a). The resulting area is —6
because there are six units placed in the second quadrant
(See Figure 5b). (Alternatively, -2 could be placed on
the y-axis below the origin and +3 on the x-axis to
the right of the origin. Six units would then be placed

=]

Figure 4. Algeblocks and the basic mat to model the
integer addition of -4 + 2, showing the resulting
sum of -2.

in the fourth quadrant, for the same answer of —6.)

An additional benefit of the Algeblocks kit is the track
that is included. The track is placed on the quadrant mat,
and the factors are placed inside the track. When the fac-
tors are multiplied and the area is filled in, the track can
be lifted to see the product only (See Figure 5c.). Then,
when the solution is recorded, the factors are not in-
cluded in the product. When students use the track and
lift the factors away, they are able to articulate the correct
product. This becomes even more important when bino-
mials are multiplied and the resulting product is placed
in all four quadrants.

This elicits a strong mathematical rationale for why
the product is negative, including directional values. Fur-
ther, there are opportunities to facilitate conversations
about why a positive number times a negative number
results in a negative number, as well as the notion that
on the coordinate plane, this shows a negative relation-
ship. Functions and slope of linear functions can be dis-
cussed to facilitate connections between these concepts.

An Emergent Model

As colleagues and researchers, we bring with us differ-
ent choices for instruction with secondary students as
well as pre-service and in-service mathematics teachers,
one using algebra tiles and the other using Algeblocks.
When we came together to select instructional materials
for a professional development grant, we debated re-
garding which set of manipulatives to purchase. Initially,
we selected Algeblocks kits. As we presented workshops
about area models for integer and binomial multiplica-
tion, we continued our debate regarding the tools. We
came to realize that by integrating the tools together, the
act of flipping pieces over provides a positional repre-
sentation for the meaning of multiplicatively inversely-
related quantities (Pratt & Eddy, 2016).

()

BEREHE
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+ - + +

===
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+ - - +

— + - =

Figure 5. (a) Algeblocks on the quadrant mat to model (-2) (+3); (b) completing the area by dimensions; and, (c) the

resulting area of —6 after lifting the factor track.
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What we argue with our innovation is that the sound-
est mathematical representation of integer and binomial
multiplication arises when the algebra tiles are placed
on the quadrant mat included in the Algeblocks kit. For
example, suppose the area of +3 is located in Quadrant I
(See Figure 6a). To represent the area of -3, we can reflect
the Quadrant I tiles either across the y-axis to be located
in Quadrant II (Figure 6b), or across the x-axis to be lo-
cated in Quadrant IV (Figure 6c). Either way, under a re-
flection, the color of the set of three algebra units is
changed, while the area remains the same.

The geometric transformation of a reflection is a math-
ematical justification for why the tiles should be flipped.
Figure 5 above shows the operation of (-2) (+3) using
Algeblocks. If this expression was modeled using algebra
tiles on the quadrant mat instead, the base would be re-
flected across the y-axis to transform its color from +2
(green) to -2 (red). The measurement of the base of two
negative units (to the left) and height of three positive
units (up) results in a negative area because it is in Quad-
rant II (See Figure 7). Next, a discussion comparing the re-
sult of (+2) (+3) that would place the area in Quadrant I
could lead to opportunities for reasoning mathematically.

Traditionally, algebra tiles are modeled using only
one quadrant, whereas the Algeblocks quadrant mat
shows the coordinate plane with all four quadrants. In
previous research conducted (Pratt, 2017), a participant
questioned why Quadrants II and IV on the quadrant
mat were shaded (as provided by the manufacturers).
She did not want to take that information for granted,
nor just be told they are negative. The incorporation of
the algebra tiles with the quadrant mat provides an ex-
cellent opportunity to engage in the question as to why
Quadrants II and IV represent negative values and
Quadrants I and III represent positive values.

For example, the +3 used in Figure 6 above illustrates
the power of reflection across both the y- and x-axes (Fig-
ures 6b and 6¢, respectively). Using the Multiplicative
Identity (+1) (+3) = +3, the factors are placed in the track
corresponding to the x- and y-axes (Figure 8a) that
formed the area. Now, when the +3 is reflected across the
y-axis for a result of -3 (as shown above in Figure 6b), the
factors in the track to represent this area are -1 on the x-
axis and +3 on the y-axis (below in Figure 8b). This rep-
resents the product (-1) (+3) =
proves that a negative number times a positive number

—3. This geometrically

@

(b)

()

- + + —

==
=]-]-]

+ - + +

==

BER [FEE

- + - + - +
+ - - + - - + - -
Figure 6. (a) Algebra tiles on the quadrant mat beginning with the area of +3; (b) reflected across the y-axis in
Quadrant Il to show -3; and, (c) reflected across the x-axis in Quadrant IV to show -3.
(@) (b) (c)
- + + - + + - + +
1] ENEN (] 1 ]1]
1] ENE (] 1]
1] ENEN (] 1] 1]
- 1] +| |- 1]+ +| |- +
+ - - + - - + - -

Figure 7. (a) Algebra tiles on the quadrant mat to model (-2) (+3); (b) completing the area by dimensions; and, (c) the

resulting area after lifting the factor track of —6.
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Figure 8. (a) Algebra tiles on the quadrant mat to model (+1) (+3) = +3 in Quadrant I; (b) reflecting +3 across the y-axis
to model (1) (+3) = -3 in Quadrant Il; and, (c) reflecting -3 in Quadrant Il across the x-axis to model (-1) (-3) = +3 in

Quadrant lll.

equals a negative number. Then, a reflection of -3 in
Quadrant IT across the x-axis results in +3, and the factors
in the track are -1 on the x-axis and -3 on the y-axis (Fig-
ure 8c). This represents the product (-1) (-3) = +3, thus
geometrically proving that a negative number times a
negative number equals a positive number. It can now be
seen that beginning with (+1) (+3) =+3 (Figure 8a) and re-
flecting across both the x- and y-axes, the result is (-1)
(-3) = +3 (Figure 8c). This series models why Quadrants
I and IV on the quadrant mat represent negative values,
while Quadrants I and III represent positive values.

We have found that flipping the algebra tiles” colors
as the area is reflected into an adjacent quadrant—com-
bining the representations for negative numbers em-
ployed by both algebra tiles and Algeblocks—stimulates
rich dialogue among pre- and in-service teachers, lead-
ing to their deeper conceptual understanding. The con-
nections between this and other algebraic concepts, such
as linear functions, abound.

Binomial Multiplication

In our research with prospective middle grades mathe-
matics teachers (Pratt, Richardson, & Kurtts, 2011; Pratt,
2017), we have found that many fail to acquire a rela-
tional understanding (Skemp, 1978) of the concept of
binomials. While algorithms involving binomials can be
performed with accuracy during instruction (instrumen-
tal understanding), the depth of the meaning of “bino-
mial” is often lacking, and real-world connections are
often not present (relational understanding). Because of
this, we developed a series of tasks that compare the
structure of integers represented by base-10 blocks to
binomials represented by algebra tiles on the quadrant
mat. In Figures 9 and 10, we demonstrate this using
(7) (11) represented as (10 - 3) (10 + 1), and compare it to
(x=3) (x+1).

@)
- +
10-10
10 =10° 10
=100
- [0 [T~

[ 1
o ]
Mo 1)

+ -

(b)
T AW ;
100
10
oo o

Figure 9. (a) Base-10 blocks on the quadrant mat to model (7) (11) as (10 - 3) (10 +1), resulting in 100 +10 - 30 -3 = 77;
and, (b) with the product on the basic mat to show the additive inverse, 100 + [+ 10 - (10)] -20-3=100-20-3 =77.
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Figure 10. (a) Algebra tiles and (b) Algeblocks to model (x — 3) (x + 1).

Integer multiplication

For example, we provide the prompt of showing the
product (7) (11) with the base-10 blocks, including the
challenge to be as efficient as possible in generating the
product. With some prompting and encouragement of
thinking, the model of (10 —3) (10 + 1) is created to show
an area model for (7) (11). The blocks can be placed on
the basic mat beside the quadrant mat to show that the
mathematical process is 100 + [10 —10] -20-3=100-20
— 3 =77 (See Figure 9).

Binomial multiplication in the set of integers
Following this example, the prompt is given to find the
product (x - 3) (x + 1) (See Figure 10). These binomials are
intentionally selected to facilitate a comparison to (7) (11)
(Figure 9). Figure 10 shows the resulting area with algebra
tiles using the traditional methods and contrasts this with
the resulting area using Algeblocks and the quadrant mat.
Our emergent model is shown in Figure 11 where the
same task is displayed, but algebra tiles are placed on the
quadrant mat. While Figure 10 shows the area is the same

value, Figure 11 builds from students” prior knowledge
of the coordinate plane and assists students’ understand-
ing of multiplying two binomials and the reason that part
of the trinomial has negative values. These connections
between algebra tiles and the quadrant mat from Alge-
blocks strengthen conceptual understandings of integer
and binomial multiplication (Pratt & Eddy, 2016).

In Figure 12, the area, x2 + x — 3x — 3, is placed on the
basic mat to engage in discussions about collecting like
terms, showing that by the Additive Inverse Property,
the units of size x will combine. The mathematical
process is x2 + [x — x] — 2x — 3 = x2 — 2x — 3. The side-by-
side comparison of the quadrant mat and the basic mat
shows that although the area resulted in four separate
terms, two of those terms can be combined and the final
product is a trinomial. This intentional step in the process
will assist students when they learn to factor trinomials,
providing them the opportunity to recognize that the
dividend will be a rectangle whose area can be repre-
sented in multiple ways.

A second task to model binomial multiplication is

(@ ()
— + — —

X
- [ 4| |- | |- -
. 1 L B || R

Figure 11. (a) Algebra tiles on the quadrant mat to model (x - 3) (x + 1); (b) completing the area by dimensions; and,
(c) the resulting area after lifting the factor track (x2 + x — 3x - 3).
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Figure 12. The product of the algebra tiles placed
on the basic mat to show the additive inverse,
X2+ [+x-(x)]-2x-3=x2-2x-3.

presented in Figure 13, where two binomials are placed
across both the x- and the y-axes, generating an area with
terms located in all four quadrants. The algebra tiles on
the quadrant mat model (x - 2) (x — 1). In this example,
one of the factors includes placing x above the origin and
-2 below the origin. The other factor shows x placed to
the right of the origin and -1 to the left of the origin.
When each dimension is multiplied, the resulting area
shows x2 in Quadrant I, — x in Quadrant II, — 2x in Quad-

rant IV, and +2 in Quadrant III. When the product is
placed on the basic mat to collect like terms (see Figure
14), the x2 and the +2 are placed in the positive region,
while both —x and —2x are placed in the negative region.
There are no additive inverses, and the like terms are
combined to show that the product includes — 3x. The
mathematical process is x2 —x —2x + 2 =x2 - 3x + 2.

Discussion

Koellner and colleagues (2007) argue that “the improve-
ment of students’ opportunities to learn mathematics
depends fundamentally on teachers’ skill and knowl-
edge” (p. 273). As teacher educators, our work supports
the notion that pre- and in-service mathematics teachers
need to engage in the reasons why certain manipulatives
are effective models of mathematical concepts if they are
to make quality decisions to “carefully select which rep-
resentations to use, as student learning is influenced by
the representations to which they are exposed and some
representations reinforce misconceptions” (Mitchell,
Charalambous, & Hill, 2014, p. 42). The NCTM (2014)

@

(b)

(c)

[=](-] =

(==

Figure 13. (a) Algebra tiles on the quadrant mat to model (x — 2) (x — 1); (b) completing the area by dimensions; and,
(c) the resulting area after lifting the factor track (x2 —x — 2x + 2).

K

Figure 14. The product of the algebra tiles placed
on the basic mat to show collecting like terms,

X2—X—-2X+2=x2-3x+2.
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guiding principle of Tools and Technology is an integral
part of effective instruction, when used appropriately.
The use of algebra tiles on the Algeblocks quadrant mat
affords the opportunity for teachers to implement the
mathematical teaching practices listed in NCTM (2014):

Establish mathematics goals to focus learning;
implement tasks that promote reasoning and prob-
lem solving; use and connect mathematical represen-
tations; facilitate meaningful mathematical discourse;
pose purposeful questions; build procedural flu-
ency from conceptual understanding; support pro-
ductive struggle in learning mathematics; and, elicit
and use evidence of student thinking. (p. 10)

Concrete manipulatives can be used to demonstrate
understandings as well as misconceptions, even when
those cannot be verbally articulated. By using algebra
tiles on the Algeblocks quadrant mat for integer and bi-
nomial multiplication, teachers can build students’ con-
ceptual understanding before moving to procedural
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