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Introduction

Selecting, planning, and implementing mathematical
activities for effective instruction require that secondary
mathematics teachers possess strong knowledge in
mathe matics, yet research has shown that mathematical
knowledge gained during undergraduate studies in
mathematics is not always sufficient for high-quality
instruction at the secondary level (e.g., Kahan, Cooper,
& Bethea, 2003; Rhoads, 2014). To handle unplanned
mathematical events in the classroom, such as answering
unexpected mathematical questions from students and
evaluating a variety of student solutions, teachers must
enact a flexible and deep command of mathematics
content (Ball, Thames, & Phelps, 2008; Loucks-Horsley,
Love, Stiles, Mundry, & Hewson, 2003). Ma (1999), in her
work with elementary teachers, described such mathe -
matical knowledge as profound understanding of funda -
mental mathematics, which is “an understanding of the

terrain of fundamental mathematics that is deep, broad,
and thorough” (p. 120). Teachers with a profound under -
standing of school mathematics can connect the topics
they are teaching to both more conceptually powerful
ideas and ideas with similar or less conceptual power,
and they appreciate multiple perspectives of mathe -
matical ideas and can provide mathematical explana -
tions of these perspectives. 

Continuing education for practicing secondary
teachers can build or strengthen teachers’ profound
under standing of the mathematics they teach, which
supports their preparedness to address the complex
mathematical issues that arise in the classroom. Loucks-
Horsley et al. (2003) argued, “By becoming a learner of
the content, teachers broaden their own understanding
and knowledge of the content that they are addressing
with their students” (p. 194 – 195). But what types of
mathematical experiences can support practicing sec -
ondary mathematics teachers in developing the unique
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mathematical understandings needed for teaching? That
is the question we address in this paper.

Description of Our Program

At The University of Texas at Arlington, we work with
practicing secondary teachers in a graduate program in
mathematics designed specifically for this group. We
view the purpose of graduate studies in mathematics as
extending undergraduate studies in mathematics, often
in an area of specialization. As such, the Master of Arts
(M.A.) degree in mathematics extends undergraduate
mathematics in the area of specialized content for sec -
ondary teaching. We aim to offer teachers opportu nities
that deepen and connect their mathematical knowledge
of high school concepts from an advanced standpoint—
opportunities that they have not encoun tered in their K-
12 or undergraduate experiences. For example, the
course Concepts and Techniques in Algebra builds on
teachers’ knowledge of abstract algebra and other under -
graduate mathematics for an in-depth exploration of
topics from high school algebra, the course Concepts and
Techniques in Real Analysis uses an historical approach
to the development of analysis to connect teachers’
knowledge of real analysis to central ideas in precalculus
and calculus, and the course Con cepts and Techniques
in Problem Solving focuses on tasks that are best resolved
using high school mathematics yet elicit advanced
mathematical thinking and the development of mathe -
-matical habits of mind. 

Challenging mathematical tasks that are designed to
develop profound understanding of high school mathe -
matics are central to the courses in the M.A. program.
Drawing from Watson and Sullivan (2008), we define a
task as a mathematical problem, prompt, or guided
exploration that is posed to learners and is “the starting
point of mathematical activity” (p. 109). We consider a
task to be high yield for teachers if it is grounded in
school mathematics with multiple avenues for develop -
ing profound understanding of school mathematics and
practicing mathematical habits of mind. The tasks we
describe in this paper are those in which teachers engage
as adult learners in a university setting; they are not
necessarily tasks that would be used with secondary
students. In addition, the tasks that we use are primarily
mathematical with the main goal of enhancing teachers’
profound understanding of the mathematics they teach
as opposed to their knowledge of mathematics
pedagogy (cf. Liljedahl, Chernoff, & Zazkis, 2007). 

Over the 15 years since the inception of the M.A.
program in Mathematics, we have worked to refine our

understanding of high-yield tasks for secondary mathe -
matics teachers by drawing on the research literature,
continuously reflecting on the mathematical tasks
implemented in our program, collecting data from
teachers, and revising tasks accordingly (in a process
similar to Liljedahl et al., 2007; see also Loucks-Horsley
et al., 2003). Written survey data from this process
contributes to our understanding of high-yield tasks,
and we share some of this data in this paper.

Characteristics of High-Yield Mathematical
Tasks for Secondary Teachers

In our work with hundreds of students in the M.A.
program for secondary mathematics teachers, we have
identified the following characteristics of high-yield
mathematical tasks. In this section we discuss these
characteristics generally, and in the following section we
illustrate examples of tasks that we have developed
according to these guidelines. 

Grounded in Secondary School 
Mathematics and Teaching
Researchers have argued that effective learning expe -
riences for teachers are centered on concepts that are
relevant to teachers. Learning advanced mathematics for
personal enjoyment is certainly a valuable experience for
teachers, but if the content teachers learn is disconnected
from teaching, it will not necessarily improve secondary
students’ learning (Loucks-Horsley et al., 2003). Teachers
in our M.A. program have echoed this point in evalu -
ation surveys, commenting on the relevance of specific
content. For example, one teacher valued content that
was more than “academically stimulating and satis -
fying;” this teacher appreciated content that directly
connected to secondary teaching. Another teacher wrote
about their favorite course in the program, saying, “[The
course] provided deeper understanding of some of the
concepts I teach and many new techniques and details
that allowed me to use [this understanding] in my class -
room.”

One way to connect mathematical tasks to school
mathematics is to build on teachers’ wonderings about
mathematics. For example, when teachers in our
program are asked to list their “why” questions, they
typically list questions such as “Why isn’t 00 = 1? I
thought anything raised to the zero power is 1?” or “How
do we know when extraneous solutions might arise in
solving equations?” When learning mathe matics- specific
technologies, they ask questions such as “When we use
dynamic technology to vary the parameter a in f(x) = ax,
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the original graph of the function seems to rotate. Is the
resulting graph a rotation of the original graph?” Tasks
can build on these important questions to help strengthen
teachers’ knowledge of these ideas. 

On the other hand, mathematical tasks do not always
have to arise from teachers’ questions to be relevant. For
instance, tasks can also take an answer to a typical high
school mathematics problem and use this answer as a
starting point for further analysis, including looking at
extreme cases of the problem situation, generalizing the
problem, or comparing the problem to other tasks
(Stanley & Sundström, 2007), and research has shown
positive effects of this approach as well (e.g., Bloom,
2007). Whether tasks arise from teacher questions, from
answers to typical high school questions, or otherwise,
for teachers to understand concepts in new and different
ways, it is important that teachers see the explicit
connections between the mathematics they are learning
and the mathematics they will teach (see also Papick,
2011). 

Build Deeper and More Flexible 
Understandings of Concepts
Researchers have shown that although many secondary
teachers have some conceptual understandings of 
sec ond ary mathematics, such as the familiarity with
multi ple representations, their capacity to make deep
con nections may be limited (e.g., Bryan, 1999; Hansson,
2005). For example, although few high school mathe -
matics teachers have difficulty in stating the definition
of function, teachers are not always aware of how this
definition connects to multiple representations of func -
tions. Researchers have reported that many second ary
teachers believe that functions are equivalent to
algebraic formulas, the terms function and equation are
interchangeable, or graphs of functions are always con -
tinuous with no sharp corners (Epperson & Meeks, 2013;
Even, 1993; Hitt, 1998; Wilson, 1994).

Mason (2008) argued that part of learning mathe -
matics for teaching is developing sensitivity and aware -
ness to sometimes subtle but important connections
among ideas. To build deeper and more flexible under -
standings of concepts, tasks must connect new ideas to
teachers’ existing understandings of mathematics (Hsu,
Kysh, Ramage, & Resek, 2007). As Karp (2007) argued,
“one of the most important aims of classes on problem
solving for mathematics teachers is to show them the all-
too-unfamiliar face of nonroutine school-level mathe -
matics” (p. 408). Tasks can build on teachers’ existing
knowledge of mathematics and provide cognitive dis -
sonance—a disagreement between teachers’ existing

knowledge and the new information being explored.
Researchers have argued that this dissonance is a key
element in transformative learning experiences for
teachers (Loucks-Horsley et al., 2003; Watson & Mason,
2007). These experiences can help teachers to develop
what Thompson, Carlson, and Silverman (2007) described
as coherent mathematical meanings. That is, well-designed
tasks can help teachers to form connections among
teachers’ existing conceptual ideas so that they form a
more coherent whole. 

Graduates of our M.A. program often cited the oppor -
tunity to strengthen their existing knowledge of mathe -
matics as one of the best aspects of the program. One
teacher wrote, “[The courses] allowed me to see concepts
that I thought I knew well from a different perspective.”
Another teacher wrote, “I can now provide background
as to why things are as they are, how they develop, and
why.” 

Reinforce Mathematical Habits of Mind
As teachers learn mathematics, they also come to
understand what it means to do mathematics (Loucks-
Horsley et al., 2003). Mathematicians engaging in mathe -
matical activity exercise mathematical habits of mind,
which include but are not limited to (a) searching for and
explaining patterns, (b) making and checking conjectures,
(c) visual thinking, (d) reasoning with multiple represen -
tations, (e) inventing mathematics, and (f) pro viding
convincing arguments and proofs (e.g., Cuoco, Golden -
berg, & Mark, 1996). These habits (and others similar to
this list) are part of guiding standards for school
mathematics in the United States, including the
Standards for Mathematical Practice in the Common Core
State Standards for Mathematics (National Governors
Association Center for Best Practices & Council of Chief
State School Officers, 2010) and the Process Standards in
Principles and Standards for School Mathematics (National
Council of Teachers of Mathematics, 2000). 

Many teachers have not experienced the teaching or
learning of high school mathematics by these processes,
and tasks that emphasize mathematical habits of mind
can help make teachers aware of the opportunities for
mathematical richness that exist in high school mathe -
matics (Watson & Mason, 2007). Loucks-Horsley et al.
(2003) argued that by experiencing habits of mind in
learning mathematics, “teachers begin to see. . .mathe -
matics teaching as less a matter of knowledge transfer
and more an activity in which knowledge is generated
through making sense of or understanding the content”
(p. 195).  
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Examples of Tasks

To illustrate the characteristics described in the previous
section, we offer two examples of tasks we have used
with practicing secondary teachers in our graduate
program.

Transformations of Functions
Using transformations to build new functions from
existing functions can generate surprising questions
from secondary students when using technology in the
classroom or when attempting to relate function
transformations to the transformations and notation
from geometry. To uncover some of the anticipated
surprises, we use a task that requires teachers to use
dynamic technology to examine the effect on the graph
of replacing f(x) with f(x) + b, b * f(x), f(bx), and f(x + b)
where b is a positive real number. After experimentation
with common functions in school algebra (e.g., f(x) = x,
f(x) =x2, f(x) = ex, f(x) = ln x, f(x) = |x|, f(x) = 1/x, f(x) = √x,
f(x) = xn, f(x) = sin x, f(x) = arcsin x), we pose possible
student questions that expose unexpected patterns or
outcomes. When these issues arise, it is critically impor -
tant that teachers be able to effectively use visual think -
ing or reasoning with multiple representations. For
example, in an open-ended exploration of transforma -
tions on f(x) = ex, teachers may observe that the graph of
f(x + b) looks like the graph of a * f(x) where a is a positive
real number. We pose a student question, “Why does the
graph of f(x + b) look like both a horizontal shift of the
graph of f(x) and a vertical stretch of the graph of f(x)?”
From here, teachers can use multiple representations,
including symbolic notation or numerical thinking with
tables, to justify this result. 

Similarly, based on their experience with transforma -
tions of polynomial functions, teachers may recognize
that the graph of f(x) = 1/x does not behave in the way
that they expect. Specifically, teachers often predict that
multiplying f by a positive real number greater than 1
will lead to a vertical stretch in the graph of the resulting
function, but the graph of the resulting function also
appears to have stretched horizontally. Teachers typi -
cally find this result surprising and may be challenged
to readily provide a mathematical explanation. Fluent
use of multiple representations leads teachers toward the
mathematical explanations for the seemingly simulta -
neous transformations viewed for f(x) = 1/x.

In alignment with the characteristics presented in the
previous section, this task arises from secondary mathe -
matics. In the secondary curriculum, it is common to
give students graphs of functions and ask how a “parent

function” of this graph was transformed to obtain the
graph (Texas Education Agency, 2012, p. 19). The answer
to this question is not straightforward in every case, as
teachers discover in this exploration. 

In addition, a deeper understanding and more
flexible thinking about transformations of functions are
emphasized, and this task helps to create cognitive
dissonance for teachers. The goal with this task is not to
introduce new concepts to teachers, but to build on
teachers’ existing knowledge to develop a deeper
understanding of transformations of functions. Most
secondary teachers would have little difficulty
symbolically verifying a statement such as “If f(x) = x
then f(x + b) = f(x) + b,” but teachers’ understanding may
not go beyond rules for moving symbols on paper and
they may not anticipate the possible questions that stu -
dents may generate when experimenting with dynam -
ically changing the parameter values. By exploring
transformations through multiple representations, the
meaning underlying these representations becomes
illuminated so that teachers can consider transforma -
tions more flexibly. 

This task also reinforces mathematical habits of
mind. As teachers explore transformations of functions,
they are asked to make and check conjectures, engage in
visual thinking, and reason with multiple represen -
tations. 

Finite Differences in Data
Another high-yield task we use with teachers explores
finite differences in bivariate data—that is, investigating
a pattern of growth by equal differences over equal
intervals. The idea for this task came from teachers’
wonderings about finite differences, a topic that is often
included in secondary textbooks but one that most
teachers have not had the opportunity to explore
conceptually or connect to higher level mathematics. 

In high school, students typically explore finite
differences using tables of bivariate data and are told
that if the first differences over equal intervals in this
table are constant, then the data can be modeled with a
linear function, if the second differences over equal
intervals are constant, then the data can be modeled with
a quadratic function, and so on. Students are then taught
a procedure for finding a defining expression for a
function that models the data. However, few secondary
teachers have considered the concepts behind these
procedures, and many teachers make incorrect general -
izations, such as believing that the data showing growth
or decay by equal differences over equal intervals is
sufficient for claiming a definitive linear relationship.
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To address these issues, we use a task that begins by
prompting teachers to observe, conjecture, and prove by
induction that the nth differences of an nth degree poly -
nomial function are constant. Making connections
among representations are a key part of this process, as
teachers can observe this result in visual, numerical, and
symbolic representations.

To follow this justification, we use the following
exploration to illustrate that constant nth differences in
data do not necessarily imply that the data was gener -
ated by an nth degree polynomial function. To begin, for
h a real number, we define ∆h to be an operator that gives
the difference between f(x + h) and f(x) for a given
function f of an argument x. That is, ∆h f(x) = f(x + h) –
f(x). We use the notation ∆h (∆h f(x)) = ∆h

2 f(x), and we call
∆h the first difference operator, ∆h

2 the second difference
operator, and so on. For the function, q(x) = x2 + 3x +
sin(2πx), teachers create a corresponding table of values
in which the x-values are integers over equal intervals
and then find  ∆1 q(x) and ∆1

2 q(x) for the values in their
table. Because q is not a quadratic function, many
teachers are perplexed when they discover that ∆1

2 q(x) is
constant (see Figure 1). Graphing y = q(x) can help
teachers to see why this is the case: The ordered pairs
from the table for q lie along a quadratic function. Using
dynamic graphing software, teachers can vary the x-
values in their ordered pairs and interval lengths to
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           x                    q(x)                 ∆1q(x)             ∆1
2 q(x)

        – 4                       4                   – 4                      2

        – 3                       0                   – 2                      2

        – 2                    – 2                     0                      2

        – 1                    – 2                     2                      2

          0                       0                     4                      2

          1                       4                     6                      2

          2                     10                     8                        

          3                     18                                               

conjecture the conditions that must be met so that the
data in the table will yield constant second differences.
As seen in Figure 2, teachers can vary the values of x to
observe, for example, that for any set of x-values spaced
over equal intervals of length 1, the corresponding
points (x,q(x)) will lie along a quadratic function.

The conjectures that arise from this experimentation
with technology require fluent use of multiple represen -
tations (e.g., algebraic justification) to support their
work. After they engage in the mathematics, teachers are
asked to reflect on how they would address finite dif -
ference activities with their students based on their work
in this task.

Figure 2. q(x) = x2 + 3x + sin(2πx) is graphed with a solid curve. The plotted points are (x,q(x)) for integer x-values over
unit intervals, and these points lie along the dashed curve y = x2 + 3x. 

Figure 1. Table of values for q(x) = x2 + 3x + sin(2πx) with
∆1q(x) and ∆1

2q(x) calculated.



To extend the finite difference concept to higher
mathe matics, we connect the difference operator to the
more general concept of rate of change. For a quadratic
function g, teachers are prompted to calculate ∆h

2 g(x) for
h = 2, h = 1, and h = 0.5. For each value of h, the second
differences are constant; however, ∆2

2 g(x) ≠ ∆1
2 g(x) ≠ 

∆0.5
2 g(x) (See Figure 3).
The patterns illustrated in Figure 3 are a natural

starting point for discussion about rate of change.
Teachers can be asked questions such as, “Why does
each table have a different value for the second dif -
ferences?” and “Can you predict the value of the second
difference for x-values 0.25 units apart?” Teachers can
then be prompted to make connections to the difference
quotient and derivative. We find that teachers often do
not naturally connect finite differences in secondary
mathematics to foundational ideas related to instantan -
eous rates of change, and after completing this task,
teachers convey a renewed appreciation and motivation
for investigating finite differences. 

In summary, this task exemplifies the characteristics
we have outlined in this paper. First, this task arises
from secondary mathematics, and in particular, this
exploration was created in response to a teacher question
in one of our courses. Teachers are curious about topics
such as finite differences for which they have limited
mathematical background. Second, this task is designed
to support a deeper understanding and more flexible
thinking about finite differences. In particular, this task
helps to raise teachers’ awareness of the inherent limi -
tations of a table of values and the generalizations that
can be drawn from it. This task also supports teachers’
development of profound understanding of the mathe -
matics they are teaching by offering opportunities to
explore the conceptual underpinnings of finite dif -
ferences and the connections to more advanced mathe -
matical ideas. Third, this task reinforces mathe matical

habits of mind in that it provides opportunities for
teachers to observe and use patterns, make conjec tures,
justify their findings, and use multiple represen tations
to explore the concepts.

Discussion

Because the tasks presented in this paper intentionally
emanate from topics directly grounded in school mathe -
matics, aspects of the tasks may appear elementary and
basic to mathematicians and mathematics teacher edu -
cators. However, their value as tasks for practicing
teachers directly corresponds to the depth of reasoning
and the questioning that accompanies the tasks. The
mathematical thinking and reasoning required presents
new mathematical opportunities for teachers typically
not encountered in undergraduate studies, and these
experiences can enhance teachers’ profound under -
stand ing of mathematics for secondary teaching. As Ma
(1999) calls for elementary teachers to develop a pro -
found understanding of the mathematics they teach, we
also argue that secondary teachers need to develop a
profound understanding of the mathematics that they
teach, with heightened awareness and sensitivity to
secondary mathematics concepts. Yet this type of under -
standing is not something that teachers acquire automa -
tically in their K-12 or undergraduate education. As
such, tasks such as those that we present can help
teachers to extend their work with mathematics. The tasks
take familiar mathematics—such as transforma tions of
functions and finite differences—but require teachers to
ponder new associated questions, justify their thinking,
and delve deeper into the mathematics that they see as
relevant for their teaching. 

We argue that tasks are suitable for teachers’ explor -
ation if the depth of the mathematical thinking needed
to engage in the task is just beyond a teacher’s reach. The
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      x            g(x)        ∆2 g(x)      ∆2
2 g(x)

     – 4             15         – 18           16

     – 2            – 3           – 2           16

       0            – 5            14           16

       2               9            30           16

       4             39            46           16

       6             85            62           16

       8           147            78               

     10           225                               

      x            g(x)        ∆1g(x)      ∆1
2 g(x)

     – 4            15          – 11             4

     – 3              4            – 7             4

     – 2           – 3            – 3             4

     – 1           – 6               1             4

        0           – 5               5             4

        1              0               9             4

        2              9             13               

        3            22                               

      x            g(x)        ∆2g(x)     ∆0.5
2 g(x)

     – 2          – 3           – 2              1

  – 1.5          – 5           – 1              1

     – 1          – 6              0              1

  – 0.5          – 6              1              1

        0          – 5              2              1

     0.5          – 3              3              1

        1             0              4                

     1.5             4                                

Figure 3. g(x) = 2x2 + 3x – 5. The first and second differences are calculated for x-intervals of size 2 (first table), 1
(second table), and 0.5 (third table).



term just beyond is important and akin to Vygotsky’s
concept of zone of proximal development for children’s
learning (e.g., Vygotsky, 1930-1934/1978). Challenging
existing mathematical ideas promotes learning;
however, the mathematical thinking needed to engage
in a task should not be so advanced that teachers cannot
connect the task to their existing knowledge or their
immediate mathematical needs for teaching. The
teachers in our program have shared these points as
well: In surveys teachers have indicated that they appre -
ciated being challenged by mathematics content that
went beyond their undergraduate studies yet was still
attainable and connected to their classroom teaching.

On exit surveys taken at the completion of their M.A.
degree, teachers indicated high levels of satisfaction with
the mathematics they encountered and reported benefits
for their students. For example, one teacher wrote, 

Teaching the same algebra curriculum for eight years
had really stifled my passion for mathematics. [This]
program has been absolutely reinvigorating. The [pro -
gram’s] curriculum is not only incredibly broad,
covering everything from fundamental arithmetic to
the historical challenges that shaped our modern
under standing of calculus, but is presented with a
depth and clarity that has given me numerous insights
into how I can better challenge my students to think
more critically and more readily prepare them to
integrate algebraic concepts into their higher level
math courses. 

More than 100 years ago, mathematicians and
mathematics teacher educators called for developing
students’ and teachers’ mathematical habits of mind and
promoted the notion that deep and connected mathe -
matical knowledge is important for mathematics
teachers (American Mathematical Society, 1899/1970),
and this call has been especially pronounced in the last
40 years (Schoenfeld, 2001). The challenge lies in pro -
voking mathematical habits of mind and deep connected
mathematical knowledge while remaining tied to school
mathematics. There is a dire need for tasks—especially
those suitable for use in graduate programs—for secon -
dary mathematics teachers that faithfully begin in school
mathematics and unpack sophisticated mathematical
ideas to help teachers develop a profound under stand -
ing of mathematics for teaching rather than tasks that
begin at a high level of abstraction and then back map to
school mathematics. There is also an acute need for tasks
that directly focus on the “uncanny unpacking” (Ball et
al., 2008) of secondary school mathematics, as there are
many more examples originating in elementary school

mathematics (Stacey, 2008). Future research on the
impact of high-yield tasks on secondary mathematics
teachers’ mathematical understandings and further devel -
op ment of high-yield tasks remain important. The char -
ac teristics articulated in this paper provide a starting
point and scaffold thinking about choosing and creating
high-yield tasks to meet the need for more examples that
specifically address profound understanding of second -
ary mathematics for teaching.
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