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The Effects of Constraints in a Mathematics Classroom
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The dictionary definition of constraint is one-sided, solely restrictive. The problem-solving definition is two-
sided. Constraints come in pairs. One retains its restrictive function, precluding something specific; the other
directs search for its substitute. The paired constraint model is applied to both domain and classroom. I discuss
the effects of curricular, variability, testing, cognitive, and talent constraints; demonstrate how paired constraints
can be used to create a new curriculum; and close with suggestions for using constraints effectively and creatively

in the classroom.
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Introduction

Kilpatrick’s image of curriculum as ““a linear path through
a multidimensional domain” (2011, p. 8) is a fine place to
start a conversation about constraints in the mathematics
classroom. Considered from a problem-solving perspective,
both path and domain are constructed and defined by paired
constraints that promote some things and some ways of
doing those things, and preclude other things and other ways.
Since I like to introduce ideas with examples, I imagined
two possible pairs for a path. One, based on Simon’s (Zhu
& Simon, 1987; Simon, 1988) seminal work on learning
by doing, would privilege procedural over conceptual
knowledge. The other, following the finding that a single
generic example can produce greater transfer than multiple
concrete examples (Kaminsky, Sloutsky, & Heckler, 2008),
would promote abstract and preclude concrete examples.

Notice—different sources, different pairs, same process.

The process, the precluding and promoting, is the core
of the constraint model, which frames my thought process
throughout this paper. 1 first (more
formally) elaborate on the model, then
(less formally) apply it successively to

important. Students, who are novices, represent problems
differently from teachers, who are experts (Chi, Glaser, &
Farr, 1986). Good teachers recognize the differences and use
them to guide instruction.

My example of a novice problem space is shown in
Table 1. My novice is a child learning to solve single digit
addition problems in increasingly efficient ways.

As the table shows, a problem space has three parts:
an initial state, a goal state, and between the two, a search
space in which the solution path from initial to goal state is
constructed. In traditional problem solving models, the path
is constructed using operators. An operator is a conditional
statement, an “if...then” rule that specifies an action (the
“then”) to be taken in a specific situation (the “if”). In the
model I use operators are replaced by constraint pairs. One of
each pair retains its expected, restrictive function, precluding
or limiting search in some parts of a problem space. The other
promotes or directs search for its substitute (Reitman, 1965;
Simon, 1973; Stokes, 2005; 2007). As expertise is acquired,
more elegant and efficient substitutions will be selected.

domain, path, and other constraints in the

classroom.

Modeling Constraints

Mathematics
structuring, and

involves  posing,
solving  problems.

Table 1.
Parts Description
Initial State: 3+5=x
Preclude Promote
Guessing > Counting all
Search Space: Counting all > Counting on
Counting on > Counting from higher addend

Constraint pairs are tools used to structure Counting N Retrieve from memory
solution paths in what Newell and Simon
Goal State: Solve for x
(1972) called problem spaces. A problem
space is how a given solver represents Criterion: With the most efficient strategy

a given problem. The term “given” is
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In my addition example in Table 1, the initial state is
an equation, the goal is to solve for x. There is a criterion
for mastery: solve with the most efficient strategy. The
solution path that produces that strategy (retrieve) is the
promote column. The constraint pairs that structure the
solution path show a progression from less to more efficient
strategies. I borrowed these from Siegler and Jenkins’ (1989)
categorization of addition strategies. In their studies, children
go from guessing to counting all the digits separately (1 to
3, and 1 to 5) and then together (1 to 8); from counting all to
counting on (starting with the 3); from there to counting from
the higher addend (starting with the 5); and finally, to simply
retrieving a known solution from memory. As the example
shows, mastery of single digit addition is constraint based.
Each successively more efficient strategy improves on, and
substitutes for, the one preceding it.

Domain Constraints

Constraints define domains, well-developed
areas of expertise that, like mathematics, have agreed
upon performance/solution criteria (Abuhamedeh &
Csikszentmihalyi, 2004; Chi, 1997; Simonton, 2004). In my
own work (Stokes, 2010; 2013), I’ve considered four kinds
of constraints.

e Goal constraints are overall criteria: agreed upon
solutions in well-structured, well-defined problems;
not yet specified solutions in ill-structured,
incompletely defined ones. These are primary because
other constraints are chosen to satisfy or specify them.

e Source constraints are existing elements that a solver
works with (promoting) or against (precluding). These
elements include subject and task constraints.

o Subject constraints identify content.

e Task constraints involve applications: materials and
ways of using them (methods) to construct solution
paths.

Constraints also redefine and expand domains. New
paradigms are acquired within a domain in the same way
that new skills are acquired by the individual. If I were to
construct a problem space for a paradigm shift, my preclude
column would include elements of older paradigms, perhaps
“emphasize basics or concepts;” my promote column, a
substitution like “emphasize applications” that defines a
newer one.

Constraints in the Classroom
Caveat magister.! There are multiple constraints in the

mathematics classroom. In addition to domain constraints,
there are curricular constraints, determining how and in

! Let the teacher beware.
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what order domain specific skills are taught; variability
constraints, specifying how differently skills are applied;
testing constraints, affecting and reflecting teaching;
cognitive constraints, limiting information processing; and
talent constraints, directing interest to brain areas with the
greatest neural plasticity; (Stokes, 2010). I consider each in
turn.

Curricular Constraints

Becoming an expert means mastering the constraints
that define one’s domain (Ericsson, 1996; 2007). The
Common Core State Standards for grades K-12 specify
the mathematical constraints to be mastered and the order
in which that mastery is to be attained. What they do not
standardize are curricula designed to meet these learning
criteria. New curricula must be created, adopted (by a
school), and adapted (by a teacher) in the classroom. Paired
constraints, including some things and some ways of doing
things and precluding some other things and other ways,
offer a model for their creation as well as their adaptation.
To demonstrate the process, in later sections I discuss (first)
how a new kindergarten math curriculum was created, and
(second) how curricula and lesson plans can be re-created in
the classroom.

Variability Constraints

Variability constraints determine how diversely, in how
many different ways, something should be done. They are
critically important early in learning, when children (or adults)
are first introduced to a domain. This is because learning
how to do something involves learning sow differently to do
it (Stokes, 1999; Stokes & Harrison, 2002). The how is the
skill; the how differently is what I call a learned variability
level. 1 think of it as a preferred, habitual range, within which
responses differ from each other (Stokes & Balsam, 2001).

High habitual levels are desirable because they facilitate
further learning and transfer in the domain of their acquisition
(Stokes, Lai, Holtz, Rigsbee & Cherrick, 2008). For example,
young children who initially use more strategies while
developing their mathematical skills (Carpenter & Moser,
1982; Siegler, 1996) acquire new strategies faster. Table 1
shows five simple addition strategies. To start, my novice
simply guesses. With experience, she retrieves the sum from
memory. In between, she counts all, counts on, or counts
from the higher addend. This last is called the “min” strategy.
Children who switched between strategies more often prior
to mastering the min strategy acquired it sooner than those
who used fewer (Siegler & Jenkins, 1989). Importantly,
less efficient (but still sufficient) addition strategies do
not disappear (Fuson, 1990). With mastery, more efficient
strategies are used more often than less efficient ones, but
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variability—measured as the number of different strategies
used on a problem set—remains stable (Siegler, 1996).
The number is the product of the child’s acquired, habitual
variability level.

I suggest ways to help children acquire desirably high
habitual levels in the section on using constraints in the
classroom.

Testing Constraints

Standards lead to standardized tests. Test preparation
improves performance by making students familiar with
content and form. Two other benefits might make test
preparation less odious to teachers. “Teaching to test,” means
doing math differently. To reiterate, the benefit of doing
things differently is the high variability, which facilitates
learning and transfer. Taking the constraint pair perspective,
precluding the usual/promoting the different, should make
both student and teacher more variable. This is not a bad
thing.

The other benefit is called “test-enhanced” (Roediger,
McDermott, & McDaniel, 2011) or “test-potentiated”
(Arnold & McDermott, 2013) learning. The argument is
that retrieving information enhances long-term retention and
subsequent performance. The evidence comes from studies
showing that students who repeatedly retrieve information
(via re-testing) retain it better than students who spend an
equal amount of time re-studying the same information
(Schwartz, Son, Kornell, & Finn, 2011). Short quizzes have
the same effect as longer tests. This too is not a bad thing.

I also talk about testing for teaching (as opposed to
teaching for testing) in the section on using constraints in the
classroom.

Cognitive Constraints

Cognitive constraints are based on a child’s brain
capacity, particularly that of the prefrontal cortex (PFC). The
PFC, considered critical to working memory and problem
solving, is underdeveloped in K—12 children. A child’s current
capacity determines both the complexity and the speed with
which problems can be solved. Complexity is affected by
memory span: older children can hold more items in working
memory than younger ones (Henry & Millar, 1991; Huizinga,
Dolan, & van der Molen, 2006; Siegler, 1996). Processing
speed too increases with development. Older children
problem solve faster than younger ones (Bjorklund & Green,
1992; Kail, 1986), and find it easier to inhibit off-task or
inefficient responding (Williams, Ponesse, Schachar, Logan,
& Tannock, 1999).

Some children’s brains mature sooner than others. These
will be your faster learners. However, the subjects in in which
they are quickest will depend on what I call talent constraints.

Talent Constraints

Talent constraints are related to plasticity in areas other
than the PFC. Plastic means moldable, pliable, variable.
Neural plasticity refers to the relative ease with which the
child’s brain adapts to different kinds of environmental stimuli.
Adaptation results in the establishment or reorganization of
associative networks in ways that facilitate further expansion
and adaptation (Garlick, 2002; Nelson, 1999) in specific brain
areas (Trainor, 2005; Werker & Tees, 2005). The most plastic
areas in the child’s brain, the ones most readily reorganized,
are the basis of what we call talents or gifts.

Talents, like other constraints, are two-sided. They
simultaneously promote and preclude interest and skill
development in different domains. How enthusiastically and
how easily children acquire specific skills depends on the
brains they were born with. For example, the child predisposed
to notice, recognize, and remember patterns (spatial, aural,
numeric) will be motivated to pursue pattern making in
the relevant domain (architecture, music, mathematics).
Conversely, the plasticity that promotes earlier entry and
mastery of one domain (Winner, 1996), will preclude equal
interest in another, one in which the brain is not as adaptable
and adept.”

Using Constraints to Create a Curriculum

At last, here comes application. To illustrate how paired
constraints can be used to create a curriculum, I’ll follow
my own thinking process in developing a math program for
kindergarten. Since I study problem solving, I started with
what I knew.

Substitution One

I knew that experts represent and solve problems using
large meaningful patterns in their areas of expertise (Ericsson,
1996; Newell & Simon, 1972). For mathematicians, these
patterns involve relationships between numbers and symbols.
This was my question: with practice, and practice primarily
with numbers, symbols, and the relationships between
them, can children learn to think and problem solve like
mathematicians? This became my goal criterion—thinking in
numbers, symbols, and relationships—and produced my first
subject constraint pair (on content):

Preclude words = Promote numeric, symbolic patterns.

By “words” 1 meant videos with cartoon characters
giving directions, as well as work sheets with word problems
related to stories or situations.

> Lower plasticity does not, however, preclude competency or—with
enough time and effort—mastery (Ericsson, 1996). The important
thing for all children is early exposure to, and immersion in, a domain.
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Substitution Two

The next step was figuring out how I wanted young
children to think in and about numbers. Again, a good place
for me to start was with a problem, place-value. Many Asian
children have no problem with place-value. Their count
makes place-value obvious. American children may have a
problem because the English count obscures it (Fuson, 1990).
Table 2 shows an English language version of the Asian
(Chinese, Japanese, Korean) counts that make the base-10
structure of our shared number system explicit.

The count shown goes from 1 through 39, which is called
three-ten-nine. Notice that every number name is guantitative.
Calling 11 “eleven” does not readily identify its placement in
the count, or its place value. Calling it “ten-one” places it
after ten and before ten-two. It also immediately identifies the
1 in the tens place value as a ten and the second 1 in the ones
place value as a one.

Thinking that children should learn this in kindergarten,
I had a second subject constraint:

Preclude the
Western count

Promote an explicit
base-10 count.

Substitution Three

Precluding words simplified content. Could I simplify
materials as well? Could a single manipulative—like the
abacus, but much simpler—make base-10 patterns visible
and concrete? This became a task constraint pair:

Preclude multiples > Promote a single manipulative.

Figure 1 presents the manipulative, a grid with moveable
numbers, number names, symbols, and colored “blocks”
representing tens and ones. This grid shows numbers from
1 through 5. Children interact visually (seeing the patterns),
verbally (reciting each row aloud) and tactilely (moving the
parts to re-create the rows or to create addition problems)
with the grid. Yes, there are some words, but they all point to
numbers, symbols, and patterns and not to stories or objects
other than the “blocks.” For example, the top row is read
“number 1 same as word one equals one block.” Figure 2
shows another grid with the numbers 10 to 15 (ten-five).
Notice that it uses explicit base-10 names and combinations
of “ten” blocks with an appropriate number of unmarked
“one” blocks. Notice too, how the block patterns reiterate the
numeric patterns in the base-10 count.

Am [ done or just begun?

Table 3 shows my current problem space. There are
spaces for additional constraint pairs. Do I need them? Have
I been creative enough? What did I leave in that should be left
out? Alternatively, have I been too creative, too controversial?
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What did I take out that should be left in? I can’t answer all
those questions here and now. Their purpose, and the purpose
of the example, is to show how paired constraints can be
used to re-think and re-create a curriculum—or a lesson plan.
What substitutions would you like to see in yours? Think
about them.

Whose expertise counts?

That exercise wasn’t too difficult, was it? Or do you
think it was easy because of my expertise? Let me make this
very clear. I may be an expert when it comes to constraints
and problem solving in general, but teachers are the experts
in the classroom. I can come up with constraint pairs, but
how a promote column gets translated into lesson plans and
implemented in the classroom is quite outside my expertise.
In fact, I could not have even begun developing a radical,
and surprisingly successful,® early math curriculum (Only
the NUMBERS Count)—based on the constraints in the
exercise—without a fantastically skilled and enthusiastic
kindergarten teacher as my partner. (Thank you, Mrs. Tronza.)

Using Constraints Effectively in Your Classroom

There’s not much even the best teacher can do about
cognitive or talent constraints. There’s a great deal that can
be done with variability, testing, and curricular constraints.
There’s even more you can do by using the curriculum
example to create or re-create lesson plans. Let’s talk about
applying what you’ve learned.

High variability facilitates learning and transfer

This suggests precluding problems that are too easy, are
solved without having to try different things/use multiple
steps, and thus reinforce low variability. Promote, instead,
problems that are just hard enough. This means determining
the solution involves trying/doing different things. In this
case, because high variability is associated with success, it
will become habitual. Cognitive and talent constraints, which
separate students into faster and slower learners in different
domains, come into play here. In the curriculum I (partially)
described, slower students can be asked to come up with
three different addition combinations for the number 5 while
faster students can be challenged to come up with six or
more. Your task as a teacher is to create tasks that will be just
hard enough for each group.

* For example, on place-value, single and double digit addition and
subtraction, and number line estimation, kindergarten children in the
pilot outperformed those in a comparison class using the district’s
standard curriculum. On number line estimation, they performed as
well as Chinese students of the same ages.
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Table 2. Explicit Base-10 Count

Figure 1. Grid with moveable parts representing numbers 1 to 5.

Ones Tens Twenties Thirties
10 ten 20 two-ten 30 three-ten
1 one 11 ten-one 21 two-ten-one 31 three-ten-one
2 two 12 ten-two 22 two-ten-two 32 three-ten-two
3 three 13 ten-three 23 two-ten-three 33 three-ten-three
4 four 14 ten-four 24 two-ten-four 34 three-ten-four
5 five 15 ten-five 25 two-ten-five 35 three-ten-five
6 six 16 ten-six 26 two-ten-six 36 three-ten-six
7 seven 17 ten-seven 27 two-ten-seven 37 three-ten-seven
8 eight 18 ten-cight 28 two-ten-eight 38 three-ten-cight
9 nine 19 ten-nine 29 two-ten-nine 39 three-ten-nine
1 One =
2 Two =
3 Three | =
4 Four =
5 Five =

10

Ten =

1"

Ten-one =

12

Ten-two =

13

Ten-three | =

14

Ten-four =

15

Ten-five =

Figure 2. Grid with moveable parts representing numbers 10 to 15 (ten-five).

Table 3.

Parts

Description

Initial State:

Current curricula

Preclude Promote
Words - Numbers, symbols, patterns
Western Count > Explicit base-10 count
Search Space: Multiple Manipulatives - Single manipulative
9
9
Goal State: New curriculum
Criterion: Thinking in numbers, symbols, and patterns
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Testing facilitates retention and further learning

This is hard. I'm asking you to preclude your aversion to
teaching for testing, and instead promote being positive about
using testing for teaching. The more practical thing is this:
Preclude doing all the test preparation at once, right before
the tests; instead promote integrating it into the lessons
where the same topics (say, addition or fractions) are being
taught. This will make your teaching and their learning both
more variable and, via retrieval practice, more effective.

Curricula are re-created in every classroom

Curricula do preclude some things and some ways of
doing things while promoting others. They do not, in fact
cannot, preclude your teaching style and the needs/levels of
your current students. What you can preclude is teaching the
curriculum exactly as given. What you can promote is varying
just enough: just enough to surprise your students (and get
their attention); just enough to challenge faster students and
foster slower ones; just enough to do what you do best; just
enough for them to do better.

Lesson plans should also be re-created

Every year, teachers learn more about teaching, about
reaching different students, differently. Go back to the section
on creating a curriculum. Draw a problem space. Put the
elements from a current lesson plan in the preclude column.
You may not want to change everything, but you probably
should change some things. Substitutes go in the promote
column. You’ll be surprised at how often one substitution
suggests another. With constraint pairs, creativity happens
step-by-step.

Closing Thoughts

Good ideas are generative; they lead to other ideas and
other applications. I hope the constraint pair idea will be
generative in your classroom. Think about it. (The spaces are
for your thoughts).

e Think of paired constraints as ways to be creative in

your classroom.

e Think about problems as opportunities for new

solutions.

e Think of paired constraints as ways to construct new

solution paths.

e Think about a specific thing that could/should be

precluded. This will be the start of your solution path.

e Think about its opposite. This will be what you

promote in its place.
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e Think again about an existing lesson plan. Preclude
some part and promote its opposite.

Think about another lesson plan. Reiterate.

Think about this with another teacher.

Think about this with your students.

Think about

Think about

Keep thinking.
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