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Mathematical Creativity, Cohen Forcing, and Evolving Systems:
Elements for a Case Study on Paul Cohen

Benjamin Dickman
Teachers College Columbia University

The Evolving Systems approach to case studies due initially to Piaget-contemporary Howard Gruber, and
complemented by subsequent work on sociocultural factors developed by Mihaly Csikszentmihalyi and others,
provides an inroad for examining creative achievements in a variety of domains. This paper provides a proof
of concept for how one might begin to explore questions about the creative development of Cohen forcing, a

powerful technique in Set Theory and Mathematical Logic.

Keywords: Paul Cohen, Continuum Hypothesis, creativity, forcing, Howard Gruber, Set Theory, mathematics,

mathematical creativity

Introduction

Duringthe 1900International CongressofMathematicians
in Paris, the preeminent German mathematician David
Hilbert announced his list of 23 unsolved problems. Within
the domain of Mathematics, these problems would be among
the most influential over the next century and beyond. Their
impact is still felt today; for example, the eighth problem on
Hilbert’s list, known as the Riemann Hypothesis, remains
unsolved as of 2013: this is despite a million dollar (USD)
prize announced by the Clay Mathematics Institute in 2000
for a solution (Bombieri, 2000).

Among Hilbert’s 23 problems, the first one listed is
known as the Continuum Hypothesis (CH) and traces its roots
back to work by Georg Cantor, the founder of Set Theory, in
1878. The problem was ultimately tackled in two parts: the
first half was completed by Kurt Godel around 1938, and the
second half was disposed of by Paul Cohen in 1963. By the
time of his published solution, Gddel was already famous for
several results, most notably his Incompleteness Theorems,
and he remains widely regarded as one of the greatest
logicians to live. For the reader unfamiliar with Godel’s
work, Albert Einstein is known for having remarked later
in life that his “own work no longer meant much, [and] that
he came to the Institute [for Advanced Study at Princeton]
merely . . . to have the privilege of walking home with
Godel” (Goldstein & Alexander, 2006). Nevertheless, it was
to be the 29-year-old Cohen who ultimately answered in full
the Continuum Hypothesis. Though less a household name
than Godel or Einstein, it is Cohen who serves as the focus of
this paper. More precisely, Cohen is known for having taken
up CH only a year before his published solution appeared,
and, despite not being a specialist in either Set Theory or
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Mathematical Logic, having successfully resolved the top
outstanding problem in both areas with his development of a
new technique known as forcing.

Abriefoutline of the remaining sections is as follows: The
next section will include general remarks on pure mathematics
in the context of case studies in creativity, as well as specific
remarks on the relatively minimal mathematical background
necessary to read this paper. (For the mathematically inclined
reader, the reference list includes upper-level texts on
forcing, as well as Cohen’s work on CH in particular.) The
paper will then trace the evolution of Cohen’s development
of forcing, with an eye to the creativity literature and a focus
on the Evolving Systems approach as described in Gruber &
Wallace (1999) and Brower (2003). The subsequent section
will examine some of the sociocultural factors underlying
Cohen’s work, before concluding with a short discussion of
the ramifications of this case study for Creativity Studies and
Mathematics Education.

Pure Mathematics in Creative Case Studies

How does one behold pure mathematics? One can behold
paintings by gazing upon them, so that even a reader unfamiliar
with the specifics of Picasso’s Guernica has at least an entry
point when reading a case study on its creation (Weisberg,
2004). Similar remarks can be made about architecture,
where one can look at blueprints or the final structure built
(Weisberg, 2011); the hard sciences, where one can look at
diffraction images of DNA or a 3D model of the double-helix
in a case study on the work of Watson and Crick (Weisberg,
2006); and so forth. Results of pure mathematics are more
akin to literary works in a foreign language, but to translate
the words is highly nontrivial, as they frequently encode
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concepts that are not part of everyday life. One technique to
present abstraction at this level is to provide metaphors, but
even this can prove a difficult task. In “A beginner’s guide
to forcing” Chow (2009) explains the method developed by
Cohen as follows: “Conceptually, this process [of forcing] is
analogous to the process of adjoining a new element X to,
say, a given ring R to obtain a larger ring R[X]. However,
the construction [in forcing] is a lot more complicated . . . .”
Providing a precise definition for terms such as “ring” would
still leave much to be desired for non-mathematicians,
as Ring Theory is an entire area of study within Abstract
Algebra, and brings with it corresponding notions unfamiliar
to many. Writing a case study on a mathematical work for
a general audience, then, is a significant challenge, both
because of the difficulty entailed in explaining what precisely
was accomplished, and in maintaining the reader’s interest.
Bearing these difficulties in mind, the rest of this section aims
to provide a bit of mathematical background, interwoven with
some of the history of CH, for the reader who is unfamiliar
with upper-level mathematics in general or Set Theory in
particular.

The Continuum Hypothesis concerns the following
question: “How many different sets of integers do there exist?”’
(Godel, 1947). A detailed history of the hypothesis and its
development canbe found inMoore (1989). Roughly speaking,
in the latter half of the 19th century, Cantor was beginning to
make precise the notions of different sizes or cardinalities
of infinite sets. Two different set sizes, in particular, came
up repeatedly. One of these set sizes corresponds to the set
of integers, often denoted Z= {0,1,-1,2,-2,3,-3,...} . Given
a set such as the integers, one can also talk about a subset
of 7Z , meaning: a set whose elements are each integers
themselves. For example, {l} is a subset of Z ; as are the
even integers, denoted {0,2,-2,4,-4,6,-6,...} ; the entire set
of integers, Z ; the empty set (a set with no elements at all);
the three element subset {-21,5,9}; and many others. One
can even discuss the set of all subsets of Z , often called ‘the
power set of Z ’*and denoted as P(Z) . In his correspondence
with Dedekind, Cantor had showed in a meaningful way that
the cardinality of Z is strictly smaller than the cardinality of
P(Z) . Naturally, then, the question arose as to whether there
is a set whose size lies strictly between that of Z and that of
P(Z).

The idea of betweenness depends a great deal on the sort
of objects being discussed. Are there any numbers strictly
between 0 and 1? If the discussion concerns only integers,
then the answer is no. However, if the discussion includes
rational numbers (fractions) as well, then the answer is
yes. For example, % lies strictly between 0 and 1. Given
the inchoate nature of Set Theory at the time, questions
about betweenness for sizes of infinite sets were effectively

intractable. Nonetheless, Cantor’s hypothesis was that the
answer is no: any infinite subset of P(Z) has either the same
cardinality as P(Z) or the same cardinality as Z ; it could
not have some other cardinality lying strictly in between the
two. This is the statement referred to throughout as ‘CH.’

How does one prove a result in pure mathematics?
From a set-theoretical point of view, one begins with a list
of assumptions (also called axioms) and rules of logical
inference. For many mathematicians, the axiom system used
derives from work by Zermelo (1908) and Fraenkel (1922).
Their initials give rise to what is known as ZF Set Theory;
an additional axiom, known as the Axiom of Choice, is
often included as well, adding a C for what is called ZFC
Set Theory. The Continuum Hypothesis as described in the
preceding paragraph can now be rephrased as follows: In
ZF or ZFC Set Theory, can one use the axioms and rules
of inference to prove CH is true? Alternatively, can one use
the axioms and rules of inference to prove that CH is false?
Note that for all the wonderful results that can be proved in
these axiom systems, they still have their shortcomings. In
particular, though it is widely believed that ZF and ZFC are
free of contradictions, one cannot prove this freedom within
these formal systems. Additionally, any axiom system!
strong enough to capture even the most basic notions about
arithmetic will have statements that can neither be proved nor
disproved. These two results follow from Gddel’s Second and
First Incompleteness Theorems, respectively. A mathematical
statement that cannot be proved or disproved within an axiom
system is said to be independent of that axiom system.

Paul Cohen (1963a; 1963b) published “The Independence
of the Continuum Hypothesis” in September and November
of 1963, approximately a quarter century after Godel’s earlier
paper on CH. Although the Incompleteness Theorems had
made it clear that some results would not be provable in ZFC,
the Continuum Hypothesis marked the first major statement
that fell into such a category. Chronologically speaking, the
time from Cantor’s original statement of CH to its inclusion
among Hilbert’s problems took about 25 years; from
Hilbert’s problems to Godel’s work took another 35 years;
and, finally, from Godel’s work to Cohen’s development of
forcing took another 25 years. Given this eighty-five year
span of time, it is noteworthy that Cohen himself wrestled
with CH beginning only in 1962, and had developed forcing
to resolve the latter half of it by the following year. How was
Cohen able to accomplish such a feat so quickly, particularly
since he was not a set theorist by trade, and why did no other
mathematician (e.g., Godel) develop an earlier proof?

! Strictly speaking, this cannot be any axiom system; instead, one must
limit to any system of recursively presented axioms (or—as a special
case—an axiom system with only finitely many axioms).
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Evolution of Paul Cohen

. in set theory when dealing with fundamental
questions, one often has a kind of philosophical
basis or conviction, rooted in intuition, which will
suggest the technical development of theorems.

(Cohen, 2002)

Basically [the Continuum Hypothesis] was not
really an enormously involved combinatorial
problem; it was a philosophical idea.

Paul Cohen, July 1985 interview
(Albers & Alexanderson, 1990)

The Evolving Systems approach to the case study
method used throughout this section is primarily derived
from the discussion in Gruber & Wallace (1999) and Brower
(2003). The former piece includes a total of nine facets that
help characterize a case study proceeding with this particular
methodology, which originated in work by Howard Gruber
as an alternative to the trait-based approaches to Creativity
Studies that preceded it (e.g., Guilford, 1950). For the sake of
convenience, the facets are listed below in the order in which
they will be addressed within this section:

Facet 1: Uniqueness

Facet 2: The Epitome

Facet 7: Problem Solving

Facet 3: Systems of Belief; Facet 4: Modalities
of Thought

e Facet 6: Purposeful Work and Networks of Enterprise
Note that Facet 5: Multiple Timescales, is not specifically
addressed, though there is an obvious chronological nature
to the discussion here. For further information on the
timescales in Cohen’s work in particular and on forcing in
general, the reader is referred to outside sources (e.g., Moore,
1988; Kanamori, 2008; Cohen, 2002). Even more generally,
the reader is referred to these three sources for accounts
of the development of forcing from a more mathematical
perspective, rather than one with an eye to the Creativity
literature. Finally, Facet 8: Contextual Frames and Facet
9: Values, will be covered, to some extent, in subsequent
sections.

Uniqueness

With regard to Uniqueness, Cohen was like many great
mathematiciansinsofaras he accrued mathematical knowledge
in more than one area. Unlike most mathematicians, though,
Cohen conducted serious research in many areas. More
precisely, he began with early interests in Number Theory and
Algebra (e.g., Albers & Alexanderson, 1990), wrote his thesis
in Analysis (Cohen, 1958), and was doing work in Differential
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Equations (Albers & Alexanderson, 1990) before he took up
the set-theoretical problem of CH and other independence
related results in 1962 (Cohen, 2002). Conducting research
in so many different spheres of mathematics contributed not
only to Cohen’s knowledge, but also to a variation in the
types of problems he was exposed to, which Gruber would
refer to as “deviation amplification,” and is likely to have
led to greater productive novelty (Brower, 2003). In Cohen’s
own words:

You know, once a problem is solved, I get a little bit
bored. I guess that’s the price you pay for being a
problem solver. I am not really interested in problems
that don’t seem to stand out . . . . I have a mentality
of enjoying the challenge of a difficult problem and
going directly for it. (Albers & Alexanderson, 1990)

Cohen also comments:

I found it very difficult to settle on one subject.
I was interested in number theory—it seemed
closest in spirit to problem-solving—but there was
actually very little number theory at [the University
of Chicago, where I did my graduate work]. The
mathematics there was more abstract. I felt that
number theory was my first interest, but I wasn’t
making progress in it. (Albers & Alexanderson,
1990)

This latter quotation segues into Cohen switching to work in
Analysis; his results in this area on the Littlewood Conjecture
(Cohen, 1960) ultimately won him the top honor in
mathematical analysis, the Bocher Prize, several years later.

Although it will not be explored in depth here, Cohen’s
ability at this early stage in his career to work in many
different areas of mathematics and move from one to another
when he felt a lack of progress is akin to the “hierarchic
thinking style” described in Sternberg (2010). For the reader
interested in this approach to Creative Studies, Cohen is
arguably: legislative, local, internal, and liberal. With regard
to the legislative, internal, and liberal nature of Cohen’s work
(i.e., a tendency to do things his own way, work alone, and
defy conventions, respectively) much can be gleaned from
Cohen’s comment: “. .. [ am always trying to do things a little
bit more primitively. I also wanted to do things completely
independently, and that was bad” (Albers & Alexanderson,
1990). On the other hand, whether Cohen’s thinking style
was more local or global is arguable. It is true that his work
on forcing has ultimately been far-reaching, but it developed
out of a successful attempt to resolve a single problem. In
response to the question of whether or not he views himself
as a “problem solver,” Cohen remarks:

Yes, I would say that. I’'m not particularly proud of
it though. I don’t think it’s a good thing to be, but
I don’t think I’ve had much choice . . . . I mean,
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it’s a somewhat, well, egotistical way of being. You
know—you want to do one problem. There are other
people who have a larger view of mathematics.
I would regard it as a higher activity for someone
to have a wider perspective from which many new
ideas and interactions emerge . . . . But I don’t think
I had much choice about the kind of mathematician
I am. (Albers & Alexanderson, 1990)

It is difficult to assess how accurate this self-characterization
is, but at the least one can confidently say that Cohen believed
himself to be working on a more local level; that is, problem
by problem.

Epitome

The Epitome of this case study (Gruber & Wallace, 1999)
is that Paul Cohen was able to develop a new method, forcing,
and resolve a long outstanding problem at the forefront of Set
Theory. He was able to accomplish this despite his youth and
the short time he spent directly engaged with CH, and did so
before any of his contemporaries. Gruber and Wallace (1999)
suggest that: “In a more extended account the question
will be posed, What led up to and what followed from the
work in question?” The former part of this question will be
at least partly answered, while the latter part (i.e., further
mathematical work on forcing) can be found in Kanamori
(2008) beginning with the fourth section.

Problem Solving

Given the above discussion of Problem Solving (Gruber
& Wallace, 1999) the comparison of Thomas Huxley and
Charles Darwin is somewhat appropriate here: the former
may have been smarter (in some sense) than the latter, but it
was Darwin who was able to adopt a novel perspective and
develop his new theory. Similar remarks could be made about
Kurt G6del and Paul Cohen, which will be delved into more
deeply later on. Gruber and Wallace (1999) also reference
earlier works on Problem Solving, such as the four-stage
theory of Wallas (1926) consisting of preparation, incubation,
illumination, and verification. Cohen’s preparation will be
returned to later as well. The incubation period for Cohen
came during a road-trip he took with his new wife near the
Grand Canyon, at which point he had the sort of illuminative
insight that is sometimes associated with Mathematical
conclusions (e.g., Poincaré, H., Russell, B., & Maitland, F.,
1914). Of this time period, Cohen remarks:

There are certainly moments in any mathematical
discovery when the resolution of a problem takes
place at such a subconscious level that, in retrospect,
it seems impossible to dissect it and explains its
origin. Rather, the entire idea presents itself at once,

often perhaps in a vague form, but gradually become
more precise. (Cohen, 2002)

Investigating the conditions directly preceding this sort of
insight are inherent to Gruber’s case study methodology;
such a focus on “microgenesis” is addressed in, for example,
Brower (2003). Cohen himself details this precise time in his
speech at the 2006 Godel Centennial in Vienna? as transcribed
below:

Rather early in the game, I think forcing occurred in
avery, very easy form to me, but I didn’t know what
I had. And T told this story somewhere: I met my
wife at that time and we took a long trip. I wanted
to show her the United States—she had come from
Sweden—we took a long trip to the Grand Canyon,
to various national parks, and as I was driving I
did a very dangerous thing: I thought hard about
mathematics the whole time. And during that time
the idea became clearer.

Though Cohen was quickly convinced his own ideas were
correct, the verification process took him all the way to
the East Coast. Unsatisfied with the response from fellow
mathematicians at Stanford and Berkeley, Cohen left for the
Institute for Advanced Study (Moore, 1988). His reasoning
can be inferred from a letter sent to Godel at this time, on
May 6, 1963, in which Cohen writes:

In short, what I am trying to say is that only you,
with your pre-eminent position in the field, can
give the ‘stamp of approval’ which I would so
much desire. I hope very much that you can study
the manuscript thoroughly and by next weekend be
willing to discuss it in more detail.

At this point, it is perhaps worthwhile to connect from
the Creativity literature on Problem Solving in general to the
Mathematics Education literature on Mathematical Problem
Solving in particular. The seminal piece with regard to the
latter is George Polya’s “How to solve it” (1945) in which he
provides an encyclopedic listing of heuristics (i.e., strategies
for solving mathematical problems); incidentally, Polya and
Cohen were both colleagues and good friends at Stanford.
Later on, Schoenfeld (1985) developed a framework for what
is necessary in order to be highly skilled at Mathematical
Problem Solving: resources, heuristics, control, and belief
systems. A more detailed investigation might explore how
the framework of Schoenfeld relates to the methodology
of Gruber, with many of the four areas above subsuming
facets of the latter. Roughly speaking, resources refers to the
mathematical knowledge accumulated by Cohen; heuristics
refers to the strategies he used in tackling CH; control refers
to Cohen’s metacognitive ability to self-regulate within

2 Arecording is available online at http://www.youtube.com/
watch?feature=endscreen&v=I1-8KzD2U9J4&NR=1.
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the problem solving process, e.g., to abandon seemingly
unfruitful approaches and persist with those that had potential;
and belief systems refers in part to Cohen’s mathematical
worldview as he developed the method of forcing. Resources
and control will be touched upon in the later discussion of
Cohen’s mathematical preparation; heuristics and beliefs
will be implicit in the next paragraph on Cohen’s Systems of
Belief and Modalities of Thought.

Systems of Belief and Modality of Thought

Cohen’s Systems of Belief (Gruber & Wallace, 1999)
evolved over time during the development of the technique
of forcing. Initially, Cohen was primarily interested in
resolving questions about the integers, which he believed
could be done through a sort of “decision procedure”
approach. Subsequently, he took on a newfound interest in
philosophical arguments, and, when finally exposed to CH,
Cohen believed an attack would be best mounted using set-
theoretical “models.” The term “decision procedures” refers
to an algorithmic process to resolve a mathematical question.
For example, when asked about the addition of integers, there
is a procedural way of answering: a calculator can even be
programed to resolve such questions. (Issues about memory
capacity are unimportant here; the salient point is that there
is a way, at least in theory, of adding up any finite number
of integers.) Since number theoretical questions can be
expressed purely symbolically in the language of Set Theory,
one might wonder: Could there exist, in theory, a calculator-
like device that takes as input the symbols and gives as output
a proof (if the statement is true) or refutation (if the statement
is false)? As referenced earlier in this paper, there are certain
statements—among them CH-—that cannot be proved or
refuted within any axiom system?® that captures even the
notions from basic arithmetic. Thus, no such proof-calculator
can exist. However, Cohen was initially unaware of this
result, proved first by Gddel and later included in a textbook
by Stephen Kleene. In his own words, Cohen remarks:

Because of my interest in number theory, however,
I did become spontaneously interested in the
idea of finding a decision procedure for certain
identities . . . . I saw that the first problem would
be to develop some kind of formal system and then
make an inductive analysis of the complexity of
statements. In a remarkable twist this crude idea was
to resurface in the method of ‘forcing’ that I invented
in my proof of the independence of the continuum
hypothesis. (Albers & Alexanderson, 1990)

3 An earlier remark applies here as well. Strictly speaking, one should
not consider any axiom system, but rather any recursively presented
axiom system.
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Cohen’s rough idea was: to figure out how complex different
mathematical statements are, begin by describing how to
decide the simplest ones, and then build up slowly so as to
be able to decide more complicated ones. That such a belief
seems reasonable makes Godel’s Incompleteness result all
the more surprising. Quoting Cohen again:

At the time these ideas were not clearly formulated
in my mind, but they grew and grew and I thought,
well, let’s see—if you actually wrote down the
rules of deduction—why couldn’t you in principle
get a decision procedure? I had in mind a kind of
procedure which would gradually reduce statements
to simpler and simpler statements. I met a few
logicians at Chicago and told them about my ideas.
One of them, a graduate student too, said, “You
certainly can’t get a decision procedure for even
such a limited class of problems, because that
would contradict Godel’s theorem.” He wasn’t too
sure of the details, so he wasn’t able to convince
me by his arguments, but he said, “Why don’t you
read Kleene’s book, Metamathematics?” (Albers &
Alexanderson, 1990)

Shortly thereafter, Kleene came to the University of Chicago,
where the graduate student Paul Cohen asked him directly
whether or not these ideas about a decision procedure
contradicted Godel’s work. Kleene assured him they did, and
so Cohen began to read Godel’s work (Cohen, 2008). Cohen
was not particularly fond of the writing style he encountered:
“Godel often expressed his ideas in rather convoluted ways
and was concerned with philosophical nuances, which I in
all honesty have never found interesting” (Cohen, 2002).
Nevertheless, he began to realize that despite his own
personal distaste for so-called philosophical approaches, such
arguments could indeed have ramifications within Number
Theory. This conclusion was to the surprise of Cohen,
as discussed in the 2006 Godel Centennial Address and
summarized in Cohen (2008) as: “How can someone [i.e.,
Godel] thinking about logic in almost philosophical terms
discover a result that had implications for Diophantine [i.e.,
number theoretical] equations?” As Cohen took on the belief
that such philosophical approaches might be worthwhile, he
combined this with another belief: set-theoretical models
were to be essential in tackling CH.

Roughly speaking, a model is an interpretation of
a collection of axioms in which they all hold true. For an
introduction to models and set theory, see Wilder (1965).
The axioms of Euclidean geometry, for example, can be
interpreted with the sort of model one learns in secondary
school, where points correspond to dots in the plane, and so
forth. In a similar vein, the axioms of ZF or ZFC Set Theory
can be thought of in terms of a model; in fact, there are
many different models and interpretations for this collection
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of axioms. Of his move to thinking in terms of models,
and especially a relevant result known as the Skolem-
Lowenheim Theorem, Cohen states: “I felt elated yet also
very discouraged . . . the feeling of elation was that I had
eliminated many wrong possibilities by totally deserting the
proof-theoretic approach. I was back in mathematics, not
in philosophy” (Cohen, 2002). Nevertheless, the idea that
there are multiple interpretations for a single set of axioms,
particularly the set taken as underlying all of mathematics,
is perhaps confusing to the non-mathematician. In fact, this
idea is just as confusing (if not more so) to mathematicians,
and was even difficult for Cohen to face:

. . the existence of many possible models of
mathematics is difficult to accept upon first
encounter, so that a possible reaction may very
well be that somehow axiomatic set theory does not
correspond to an intuitive picture of the mathematical
universe, and that these results are not really part of
normal mathematics . . . . I can assure you that, even
in my own work, one of the most difficult parts of
proving independence results was to overcome the
psychological fear of thinking about the existence of
various models of set theory as being natural objects
in mathematics about which one could use natural
mathematical intuition. (Cohen, 2002)

With regard to the ways in which creative people think, one
might wonder how mathematicians in particular think when
developing their creative works. Perhaps one may wonder:
“Do mathematicians think in equations?”” (Gruber & Wallace,
1999). More specifically, one could ask: Do geometers think
visually? Do logicians think symbolically? This more general
idea of how one thinks (visually, verbally, symbolically,
etc.) is referred to as one’s Modality of Thought (Gruber &
Wallace, 1999). For Cohen in particular, his way of thinking
was with the aforementioned models. Of approaching Set
Theory in general, he writes, “we will never speak about
proofs but only about models” (Cohen, 2002). With this
Modality of Thought, Cohen was able to adopt the belief that
model construction was a key feature in devising his proof.
Still, his earlier philosophical beliefs were retained to some
extent as well:

Of course, in the final form, it is very difficult to
separate what is theoretic and what is syntactical. As
I struggled to make these ideas precise, I vacillated
between two approaches: the model theoretic,
which I regarded as roughly more mathematical,
and the syntactical-forcing, which I thought as more
philosophical. (Cohen, 2008)

Fundamentally, the development of forcing was made possible
by the adoption of these two beliefs: the idea of coming up
with an interpretation, or model, of the Set Theory axioms
in which CH does not hold; and the idea of building up this

model by adding new pieces to the model and examining
them, in increasing order of complexity, to ensure that all the
axioms continued to be true, but that the final model included
anew set size between that of Z and that of P(Z).

Purposeful Work and Network of Enterprises

Cohen’s purpose in his mathematical work was to
seek simple answers for difficult problems. Of the Skolem-
Lowenheim Theorem, mentioned earlier as relating to models
and being crucial to the resolution of CH, Cohen remarked it
to be “perhaps a typical example of how a fundamental result
which has such wide application must of necessity be simple”
(Cohen, 2002). Of his own work, Cohen declared his “ideal”
to be “to take a problem which looks very complicated and
find a simple solution” (Albers & Alexanderson, 1990). An
essential feature of the Evolving Systems approach is that the
purposeful work be carried out over a long period of time—
perhaps even one’s entire life (Gruber & Wallace, 1999). Cohen
was already aware of Galois Theory, a subject for an upper-
level college or first-year graduate course in Mathematics, by
the age of around nine (Albers & Alexanderson, 1990). His
“earliest interest in logic™ dates back to his time at Stuyvesant
High School (Cohen, 2008). Though not working explicitly
on CH or even in Set Theory, Cohen spent about two decades
engaged in serious mathematical thought before having his
breakthrough insight during a trip to the Grand Canyon.
Descriptions of Cohen’s various mathematical achievements
and work over time can be found in several of the references
provided; this paper aims only to discuss one specific aspect
of his development, as it relates to a particular work post-
dating the earlier accounts of Cohen and forcing.

During his commentary at the 2006 Godel Centennial,
Cohen briefly touched upon a particular problem that was
resolved five years before his work on CH commenced.
Known as the Post Problem and solved by Richard Friedberg,
Cobhen states:

Atthat time there was great interestamong Raymond
[Smullyan] and some other people about the Post
Problem. And that’s a problem which could have
interested me; it had a mathematical flavor to it. But
I never thought about it, and occasionally we’d have
coffee and I’d hear these people talk about it. But
one day, someone came to my office and said, “This
problem’s been solved.” And I said, “Really?” “Yes,
here’s the letter. I can’t believe it’s true!” And he
gave it to me and I read it. [ went to the blackboard,
took some chalk, and I said, “Well, it seems right.”
This is the proof by Friedberg—and so that was
my only contact with logic at that point. But I still
never lost this idea of somehow thinking about the
foundations of mathematics: trying to find some kind
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of inductive technique for simplifying propositions;

perhaps leading to a decision procedure, when

impossible.*
An interesting feature of the Post Problem is that the
technique used to resolve it, known as the priority method,
is one of only a couple “important precursors to the modern
theory of forcing” (Kunen, 1980). This observation was made
early on by mathematical logician Georg Kreisel, who “saw
an analogy between forcing and Friedberg’s [1957] priority
argument” and noted as much in a letter to Gddel in April
of 1963 (Moore, 1988). Cohen’s remarks above were later
written up as a preface to a re-printing of “Set Theory and the
Continuum Hypothesis” (Cohen, 2008) in which the section
corresponding to the above transcription is:

A small group of students were very interested
in Emil Post’s problem about maximal degree
of unsolvability. I did dally with the thought of
working on it, but in the end did not. Suddenly,
one day a letter arrived containing a sketch of the
solution by Richard Friedberg (Friedberg, 1957),
and it was brought to my office. Amidst a certain
degree of skepticism, I checked the proof and could
find nothing wrong. It was exactly the kind of thing
I would like to have done. I mentally resolved that I
would not let an opportunity like that pass me again.

It is not easy to know how accurately Cohen, in this 2006
recollection or his earlier 2002 piece, is recounting the events
from four decades earlier. Even if true, one’s own stories can
themselves be a form of creative work: depending on what is
included or omitted, and what is viewed as being continuous
(or not) with earlier and subsequent events (Bateson, 2001).
Of course, post hoc recollections of inspiration are often
less accurate (Gruber, 1981). In any event, taking Cohen’s
recollections at face value, a few observations are of note.
First, Cohen is deeply interested in a problem whose method
of solution is closely related to his subsequent work on
forcing.’ Second, Cohen has received only a sketch of a
proof: as is nearly always the case, mathematical works at
a high-level (especially pre-prints) will leave at least some
of the details to the reader. Cohen’s initial response, then,
is to walk up to a blackboard—chalk in hand—and “check
the proof” to see if it is correct. That Cohen would be able
to work through these details and understand such a method
is especially notable insofar as it takes place a half-decade
(1957) before he begins to wrestle with CH (1962). Third,
Cohen promises himself that he will not let a problem like that
“pass him again.” This hones his sense of purpose, as Cohen

4 Video of Cohen’s speech can be viewed at http://www.youtube.com/
watch?v=1qSSZqzfY9U &t=7m46s

5 For further discussion of the similarities, see http://mathoverflow.
net/questions/124011/similarities-between-posts-problem-and-cohens-
forcing.
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is now determined not to let similar problems pass him by in
the future; indeed, he stays true to this resolution. Thus, while
there are stories of Cohen asking logicians in 1962 for the
toughest problem, being told it is CH, and resolving it by the
next year (e.g., his introduction at the Gédel Centennial) it is
clear that Cohen’s background—in terms of the beliefs and
mode of thought described earlier, as well as his familiarity
with the Post Problem and its solution—prepared him at least
five years before his work on forcing commenced.

As a segue into the next section, one must also take note
of the various persons with whom Cohen came into contact.
From reading the earlier work of Skolem, to receiving a pre-
print from Friedberg, to interacting with several logicians—
including Gddel, once the key ideas of forcing were in place—
Cohen was able to work in many areas of mathematics and
communicate with many mathematicians. This Network of
Enterprises (Gruber & Wallace, 1999) further typifies many
creative individuals, allowing for deviation amplification in
addition to the acquisition of diverse sorts of knowledge.
In exploring such a concept, even within an ivory tower
discipline such as pure mathematics, one must step outside
of the individual and investigate what is occurring from a
societal and cultural perspective (Csikszentmihalyi, 1988).

Sociocultural Factors

There are a total of five Contextual Frames (Gruber &
Wallace, 1999) or contexts that are singled out as relevant
to the individual being studied with the Evolving Systems
approach. In the case of Cohen, these are: enterprises directly
related to forcing and its development; his body of work and
overall purpose; his family; his “professional milieu,” i.e.,
fellow mathematicians; and the “sociohistorical milieu.” Of
these, only the final two will be delved into below. The first
two have already been discussed to some extent; meanwhile,
with regard to Cohen’s family, it was mentioned earlier that
he was driving with his wife, shortly after they had married,
when his thoughts on forcing finally coalesced. The two
would also go on to have several children, among whom one,
Charles, provides a poignant contribution to the American
Mathematical Society notes on his father’s passing (Cohen,
2010). Nevertheless, it is the mathematicians who were
around Paul Cohen and the sociohistorical milieu of the time
that warrant further attention here.

How are sociocultural factors related to creative
developments in pure mathematics? Cohen, in his
recollections about his early childhood, remarks:

[M]ath especially appealed to me. If you read
something about electricity, for instance, you find
out that you need a lab to do anything yourself,
but with math you can do problems right away.
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So I just naturally went further in math. (Albers &
Alexanderson, 1990)

With no need for a laboratory or any equipment, one might
think that mathematical developments—even great ones—
could come about without societal or cultural concerns. Of
course, social network is important, even in mathematics, and
Cohen was in contact with several strong mathematicians.
In addition to those already mentioned Cohen was also
in contact with several logicians, including Azriel Levy
and Solomon Feferman. This is necessary for discussing
mathematical ideas, and also for obtaining mathematical
works, particularly in the pre-Internet era, such as Friedberg’s
sketch of an argument that resembled Cohen’s subsequent
technique of forcing. Many results in logic in particular
were known among a small network of people, but not
written down anywhere accessible. Historian of mathematics
Moore (1988) notes: “At the time [around which forcing was
developed] there existed a substantial ‘folkore’—a body of
unpublished results that were known only to the so-called
cognoscenti . . . .” The social connections afforded Cohen,
then, were an integral part of his subsequent work.

Additionally, there is the consideration of which
mathematical questions are deemed important enough to
warrant the attention of mathematicians. For the case at hand,
it was Hilbert’s list of 23 problems at the turn of the century
that lent credence to the notion that CH was a problem
worthy of one’s time. In particular, CH joined a long list of
famous mathematical problems that were determined by the
field of mathematicians to be important within the domain
of mathematics (Csikszentmihalyi, 1999). Even still, Cohen
comments:

No one specifically said so, but there was a feeling
that something radically new would have to be
done to solve [the Continuum Hypothesis]. I
didn’t get the impression that mathematicians not
in logic were all that interested. That may sound
strange, but it seemed true at the time. All in all, the
problem seemed to be in a kind of limbo. (Albers &
Alexanderson, 1990)

This general “feeling” pairs with Hilbert’s list to produce
a problem that was at once considered important enough
to attract Cohen, yet difficult enough to dissuade other
mathematicians from working on it.

Separately, there is a sociohistorical question regarding
what precisely Cohen proved. The notion of proving the
independence of CH requires proof that it is independent from
a particular set of axioms. As remarked in the second section,
Cohen’s work demonstrated that ZF and ZFC Set Theory
(assuming they are free of contradictions) are not powerful
enough to prove or disprove CH. Though the problem was
initially posed in 1878, it was not until 1922 that ZF Set
Theory had been formally proposed, and even then it would

not be immediate for mathematicians to latch on to it. Thus,
for the first 45 years of the problem, the work that was done
by Cohen was, historically speaking, not possible. From a
societal viewpoint, mathematicians had to accept ZF or ZFC
Set Theory as somehow capturing mathematics accurately
for Cohen’s result to be of any interest. Sociocultural and
sociohistorical factors would continue to be relevant even
after Cohen’s result was published and accepted. In particular,
Cohen had demonstrated something about the provability of a
statement; he had not settled the separate question of whether
CH is actually true or false. For those mathematicians who
conceive of a frue mathematics existing, regardless of the
set-theoretical axiom system ultimately used, there is a
lingering dissatisfaction insofar as CH was only shown not
to follow from ZFC Set Theory. Cohen addressed this in
his 2002 and 2008 works where he argues that, ultimately,
CH is false; Godel (1947) suggested a search for another
intuitive axiom to be added on to ZFC Set Theory: one
that accords with mathematicians’ natural intuition, and
which can settle CH one way or the other. Regardless, these
concerns continue today, and are in large part determined not
strictly by some mathematical fact, but rather by the views
of mathematicians—set theorists, logicians, and otherwise—
who work in mathematics.

Ramifications in Mathematics Education and
Creativity Studies

The final facet of the Evolving Systems methodology to
be considered is that of Values (Gruber & Wallace, 1999). In
particular, Gruber and Wallace state: “For better or worse . . .
certain aspects of creative work have been neglected—by
us and by like-minded colleagues.” Although they go on to
discuss more specific issues surrounding morality, one might
wonder whether certain areas of creative work are being
neglected when it comes to conducting case studies. What
are the ramifications given a literature on creativity in which,
for example, pure mathematics receives little attention? The
difficulties of carrying out such a case study given a non-
mathematical readership were discussed early on; even
still, this paper is sure to have covered some topics without
complete clarity (e.g., what exactly is a model?) and to have
avoided deeper discussions of others (the astute reader has
no doubt noticed that forcing is nowhere defined here, nor
are the specific axioms of ZFC listed). To shy away from
pursuing case studies in mathematical creativity is dangerous
for several reasons. Here are but two: first, it may leave
others with the impression that creativity is absent from
mathematics; second, it may deprive those who wish to learn
and teach mathematics from the insights that can be gleaned
from better understanding how a great mathematical work
comes about. This latter point is expanded upon below.
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What are the implications of a single case study on a
particular mathematical development in a broader context?
In an ideal world, to learn from Cohen’s approach some new
way of fostering mathematical creativity. This paper has
argued that Cohen was specifically primed to resolve CH
by virtue of his initial interests in decision procedures, and
his subsequent Modality of Thought being rooted in the use
of set-theoretical models to think about mathematics. From
these two observations alone, certain questions arise. The
approach using decision procedures was mathematically
ungrounded, as it violated Godel’s Incompleteness result,
which eventually led those in Cohen’s social network to
inform him of his error. This then led Cohen to read Godel’s
work (first in Kleene’s textbook) and his realization that
philosophical arguments could be applied successfully to
number theoretical questions. However, it was his incorrect
initial approach that re-appeared in his ultimate solution.
Perhaps other logicians around the time of Gddel (including
Godel himself) were less inclined to think in this particular
way, as they were already aware that it was, in a strong sense,
a dead end. How does this inform the way that teachers
of mathematics respond to students who are attempting to
solve problems in ways that are easily seen as “incorrect?”
Pedagogically speaking, how should educators deal with
these approaches? Should they correct the students? If so,
when? Surely the first observation leads to more questions
than answers.

Similarly, what does the idea of a Modality of Thought
suggest to teachers of mathematics? Gruber and Wallace
(1999) wondered whether mathematicians thought in terms
of equations. For mathematics students who think visually:
should they be encouraged to pursue areas of Geometry or
Topology? For those who think symbolically: should they
be encouraged to pursue Algebra or Logic? What general
lessons, if any, can be drawn from Cohen’s success in using
his model-based thinking to dispose of a great, unsolved
problem in Set Theory? Again, more questions than answers
arise, though it would be rather ironic to use a case study
on Paul Cohen to justify pointing students in certain
directions: after all, he was renowned for the vast number of
areas within mathematics in which he worked. Perhaps the
take-home message of this early foray into case studies on
highly creative mathematical works is that there are further
conversations to be had, even if the specific result serving as
a springboard—here, the technique of forcing—remains as a
bit of a black-box.

® An interesting piece on partial progress by Fields Medalist and
MacArthur Fellow Terence Tao is relevant to the discussion here.

As Tao remarks: “it can often be profitable to try a technique on a
problem even if you know in advance that it cannot possibly solve the
problem completely.” The reader is referred to https://plus.google.
com/114134834346472219368/posts/Xdm8eiPLWZp for the full text.
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