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Student success in undergraduate mathematics has
significant implications with regard to whether they
choose to continue into science, technology, engineering,
and mathematics, or STEM, majors and future related
careers. But even for those students who do not choose
to major in mathematics, science, or engineering, success
in entry-level undergraduate mathematics courses such
as calculus can make or break their decision to persist in
postsecondary education (Ferrini-Mundy & Graham,
1991; Moreno & Muller, 1999; Subramaniam, Cates, &
Borislava, 2008). This article describes how the under -
graduate Learning Assistant (LA) model was used as a
catalyst to motivate changes in the teaching and learning
of postsecondary calculus. 

Calculus continues to maintain significant status in
undergraduate STEM education. In a meeting in
Washington in 1987, mathematicians reported that “as
many as 40% of undergraduates were failing introduc -
tory calculus, and even those who passed did not

appreciate the subject’s relevance” (Wilson, 1997, p.
A12). And yet, more than 25 years later, the same failure
rate is common in many university calculus programs.
At University of Colorado Boulder (CU-Boulder), for
many years the percentage of students who earned a D,
F or withdraw in first semester calculus had been a
consistent 34%. However, after implementing some of
the preliminary features of the Learning Assistant
program in the calculus recitations, the percentage of
students earning a D, F, or withdraw dropped to 27%.
This drop was equivalent for both males and females
and all ethnic groups showed corresponding improve -
ments. This result elicited the following questions: Was
this an anomaly or the beginning of a positive trend in
increasing student access to postsecondary calculus?
More importantly, what are the specific benefits of the
LA calculus program that trans lated, it appears, into
improved end-of-course grades for students?

ABSTRACT This article presents several of the challenges facing postsecondary mathematics
education and describes how the undergraduate Learning Assistant (LA) program has been used
as a catalyst to engage faculty and students in redesigning opportunities to learn mathematics.
Characteristics of the LA program that have been used to transform introductory undergraduate
science courses are discussed. We then describe how the LA program was implemented in a
mathematics department vis-à-vis the specific contextual features of a mathematics department at
the University of Colorado Boulder.
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40 | DAVID C. WEBB, ERIC STADE, RYAN GROVER

The Status Quo for Student Learning 
of Calculus

There are few studies of undergraduate mathematics
teaching (Speer, Smith, & Horvath, 2010). But conver -
sations with other mathematics faculty, information
gleaned at mathematics and mathematics education
workshops and conferences, and perusal of web-based
curricular materials has revealed to us quite a bit of
commonality in the way in which calculus is taught at
many universities and community colleges. Three to
four times per week a lecture is prepared and delivered
by mathematics faculty (cf. Natarajan & Bennett, 2014).
For the recitation, which is usually offered once or twice
a week, a doctoral student is assigned as a teaching
assistant (TA). Typically, the TA either prepares a session
that highlights key features of the lecture or reviews
related homework assignments. With respect to course
structure and student interaction, often the lecture is
teacher-directed (and usually held in large lecture halls)
and recitations have lower instructor-to-student ratios,
but are still mostly directed by the assigned TA. That is,
student-to-student interaction is usually not observed in
the lecture or the recitation (Alsina, 2001). 

The content of a calculus course is also quite similar
across institutions (cf. Hillel, 2001). De facto national
curriculum standards for the first two semesters of
calculus have been recognized by the ubiquitous offer -
ings of Advanced Placement Calculus AB and BC at the
high school level, with course guidelines and assess -
ments that crystallize key features of the calculus
sequence that one might expect in the first two semes -
ters. Quite often, however, in both the secondary and
post-secondary versions of the course, to meet the pacing
demands greater emphasis is placed on procedural
fluency at the expense of conceptual understanding even
though these goals are not in conflict.

This describes how calculus was taught at CU-
Boulder as well, until recently. But in the last half-dozen
years or so, we have introduced some significant
changes, perhaps the most substantial of which is our
undergraduate Learning Assistant program.

The Colorado Learning Assistant Program

The Colorado Learning Assistant (LA) program represents
a highly researched, multi-disciplinary model of educa -
tional change (Otero, Finkelstein, McCray, & Pollock,

2006; Pollock & Finkelstein, 2008; Smith, Wood, Adams,
Wieman, Knight, Guild & Su, 2009). Since its origins in a
single astronomy course, it has grown to serve eleven
different mathematics and science departments at CU-
Boulder, and to be emulated at more than 50 institutions
of higher education nationwide (Learning Assistant
Program, n.d.). 

The LA program uses the transformation of intro duc -
tory large-enrollment courses as a mechanism to achieve
four goals: a) to improve the quality of mathematics and
science education for all undergraduates, b) to transform
departmental cultures to value research-based teaching,
c) to engage faculty in the recruitment and preparation
of future teachers, and d) to recruit and prepare talented
STEM majors for careers in teaching.

Since 2003, LAs have been used in science depart -
ments at CU-Boulder to support student learning in
recitations2 and support aspects of course transforma tion
that differs across departments. LAs are undergraduate
students who have had previous success with the same
course and have expressed an interest in supporting the
learning of subsequent cohorts of undergraduates. What
is common across the LA experience at CU-Boulder
(since implementation may vary at other institutions that
have emulated the program), is the following:

1. LAs meet weekly with their faculty instructor to plan
for the upcoming week, reflect on the previous week,
and analyze formative and summative assessment
data collected periodically throughout the course; 

2. LAs facilitate student collaboration and small group
work in weekly recitations, by formatively assessing
student understanding, encouraging student interac -
tion and discovery, and asking guiding questions; and

3. LAs from all departments attend a special School 
of Ed uca tion seminar on Mathematics and Science
Educa tion, where they reflect on their own teaching
and learning and make connections to relevant
education literature (Otero, 2006).

Together with the faculty and teaching assistants who
teach the targeted courses, LAs provide enhanced
opportunities for enrolled students to engage actively in
their learning. However, because the Learning Assistant
initiative originated in CU-Boulder science departments,
there were initially only limited opportunities for
mathematics faculty to implement this program in ways
that recognized the particular features of mathematics
and mathematics courses. 

2 In general, recitations are weekly review sessions led by a teaching assistant. With large lecture calculus courses there are often
multiple recitations organized to reduce the student-to-TA ratio to a small section format of roughly 30-to-1. SC
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Developing and Implementing the
Undergraduate LA program in Calculus I

Inspired by the culture and the success of active learning
and, especially, of Learning Assistant programs in CU-
Boulder science departments, the authors undertook
efforts to transform our first semester Calculus course
with help from Mathematics and School of Education
colleagues. This endeavor commenced around 2008, and
is ongoing.

Our approach has taken into account research
regarding: 1) the use of cognitively demanding mathe -
matics tasks, 2) the construction of learning environments
that recognize the need to balance socially mediated
learning and individual reflection, and 3) the use of
undergraduate Learning Assistants to support student
learning. Each of these mutually contributing factors are
elaborated below, with particular attention to their
implementation in undergraduate calculus.

Mathematical competencies and 
mathematics tasks
We do not propose changing the topics addressed in first
semester calculus. Rather, we argue there is a compelling
need to enhance the learning goals to engage students
in tasks that promote and assess their procedural fluency
as well as their understanding of essential concepts.
What can often be lacking in calculus courses are
opportunities for students to make sense of the funda -
mental concepts of calculus and build mathe matical
connections among topics and various representations.
Although counterintuitive, the lack of cognitive demand
in mathematics tasks can limit student access to higher
mathematics. Student engagement can and should be
promoted through conceptually meaningful tasks that
are cognitively demanding for students (Stein, Grover,
& Henningsen, 1996). Given the historical (Dunham,
1991; Kline, 1972) and contemporary (Lakatos, 1976;
Polya, 1945) positioning of tasks in the development,
teaching and learning of mathematics, it is logical to
expect that increased student access can be found in the
pre sen tation of the same topics in more meaningful and
con ceptually revealing ways.

To support student learning, instructional tasks should
elicit cognitive activity that represents a range of mathe -
matical reasoning (Silver & Stein, 1996). To sup port the
selection, adaptation, and design of tasks, a frame work

for student reasoning that respects the key topics in the
content domain and the nature of how stu dents learn
and come to understand mathematics must be con -
sidered. To address the goals of this research, two
somewhat broad aspects of mathematical reasoning will
be used.

Reproduction of procedures, concepts, and def ini tions.
This reasoning category involves knowing facts, recog -
nizing equivalents, recalling mathematical objects and
properties, performing routine procedures, applying
standard algorithms, and developing technical skills, as
well as dealing and operating with statements and
expressions containing symbols and formulas in “stan -
dard” form. The reasoning elicited by such tasks is
almost exclusively memorization and recall, although
several tasks in this category may collectively promote
mathematical connections between topics or represen -
tations. Tasks in the reproduction category are often
similar to those found on many standardized tests. These
tasks are quite familiar to mathematics teachers and
students from K-12 to postsecondary mathematics.

Connections, justification, and generalization. Tasks
exemplifying this reasoning category promote con -
ceptual connections within and between the different
domains in mathematics, motivate students to integrate
information to solve simple problems, and often are
accessible to a range of solution strategies. As these tasks
are “more open to a range of strategies” they tend to be
more open-ended. Students solving problems of this
type need to interpret different representations accord -
ing to situation and purpose, and they need to be able 
to distinguish and relate a variety of statements (e.g.,
definitions, claims, examples, conditioned assertions,
proofs).

Tasks in the connections category are sometimes situ -
ated within a context to promote connections between
mathematics and modeling of realistic phenom ena,
requiring students to recognize and extract the
mathematics embedded in the situation. Tasks that
require mathematical justification and generalization,
even though they are sometimes regarded as a separate
category, are also included in this category for the pur -
poses of this study since we are more concerned with
identifying tasks that require more than memorization
and recall.
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Construction of Collaborative Learning
Environments
With more cognitively demanding tasks come greater
opportunities for socially mediated learning and
collaborative problem solving. Lectures have a purpose
and place in undergraduate STEM education. The well-
crafted lecture, even though it can be interpreted as a
passive learning experience, can focus students’ atten tion
on key mathematical ideas, methods, and tech niques. Of
course “can” is the operative qualifier. How students
focus in lectures varies depending on the extent to which
the instructor takes into account students’ prior
knowledge and the extent to which students come
prepared and attend to the main points. Recitations also
serve an important role in student learning and are
usually offered as part of a calculus course. In contrast
to the lecture, recitations can be quite varied in their
approach and purpose. They can range from oppor -
tunities for mini-lectures on a specific topic, to dis  cus -
sions of homework problems, to an opportunity for
students to collaborate in solving fundamental problems
and applications of recently learned concepts.

Currently, as with most undergraduate mathematics
programs, there exist many opportunities for students
to engage in self-initiated, individual reflection on what
they are learning in calculus. Then again, time and
support for self-initiated individual work in under -
graduate mathematics is not the problem. Lectures and
recitations can offer interested students passive or direct
feedback on their solutions to assigned problem sets.
However, there are few opportunities for students to
share work in progress, model and sketch related
representations, and propose different solution stra -
tegies to their classmates. The proposed addition of col -
labor ative problem solving in recitations draws upon the
contributions of Vygotsky (1978) and contemporary
findings in cognitive science and theories of socio-
constructivist learning (Bransford, Brown, & Cocking,
2000; Donovan & Bransford, 2005), which suggest
students need opportunities to test and hone how they
articulate their emergent ideas among their peers. Focus
and guided collaboration can support student learning
in mathematics by contributing to the extension of one’s
zone of proximal development, described by Vygotsky
(1978) as “the distance between the actual developmental
level as determined by independent problem solving
and the level of potential development as determined
through problem solving under adult guidance, or in
collaboration with more capable peers” (p. 86). How
might their insights, methods, conjectures and refutations
stand up to the scrutiny of other learners when they are

solving nonroutine mathematics problems (e.g., Lakatos,
1976)? When students have opportunities to compare
and articulate their work with others, those who have
recently experienced personal advances in their own
learning can often locate important representations or
metaphors that “worked for them.” These can serve as
cognitive scaffolds that support new learning of their
classmates (cf. Topping, 1996). Research on peer-
supported collaborative environments has identified
several important features that support student learning,
including the verbal development of academic language
and ongoing feedback, assistance, and explanation of
solution strategies while peers are solving problems
(Webb & Mastergeorge, 2003). Such small group
collaboration can also result in improved achievement,
dispositions, and persistence in undergraduate mathe -
matics (Springer, Stanne, & Donovan, 1999). 

Uri Treismann (1992), in his research on the use of
study groups to increase access of African-American and
Latino students in UC-Berkeley’s undergraduate calcu -
lus, drew from this same theory of socially mediated
learning. In addition, the Berkeley study group model
strongly suggests the use of challenging problems that
move students beyond simply reviewing exercises that
reinforce procedural knowledge to support sense-
making and application of their knowl edge in new ways.
Getting students together to review answers to problem
sets is not what we are suggesting here. Rather, the need
to collaborate in problem solving should be authentic.
To promote discussion and exchange of ideas the mathe -
matics problems used in recitations need to be “group
worthy” (Boaler, 2006).

The engagement in recitations is key to students’
deeper understanding of the material, which we hope to
leverage into their pursuing further mathematics and
mathematics classes. Instructor and student activity in
recitations used to be focused primarily on answering
home work questions. Now, students participate in
engaged inquiry that encourages a greater focus on con -
ceptual understanding and fosters connections among
distinct ideas.

Use of Learning Assistants
Like any department at CU-Boulder, The Department of
Mathematics applies for Learning Assistants through
“LA Central,” the umbrella campus unit that oversees
the LA program. In their application, faculty must
describe their commitment to course improvement and
transformation, and to active, student-centered teaching
and learning. Student applications to be hired as a Learn -
ing Assistant are also accepted through LA Central. 



ROUSING STUDENTS’ MINDS IN POSTSECONDARY MATHEMATICS | 43

From those students who have applied to be Mathe -
matics LAs, the Mathematics Department selects perhaps
twenty or so to interview. (We typically use ten to a
dozen LAs each semester.) The interviews are con ducted
by mathematics faculty who will be teaching calculus.
Typically, selection will be based on fluency with and
appreciation for the subject material, and, at least as
importantly, on enthusiasm for communicating mathe -
matics to others. 

The responsibilities of a CU-Boulder Mathematics
Department LA are similar to those of other LAs in other
science departments on campus. A Mathematics Depart -
ment LA assignment entails ten hours of work a week,
with that time divided up as follows:

• Three hours a week facilitating small group work 
in calculus recitations;

• One hour a week tutoring in the Department’s
Undergraduate Mathematics Resource Center, or
“help lab;”

• One hour a week in meetings with Calculus
instructors, focusing on content;

• Two hours a week attending a School of Education
seminar on Mathematics and Science Education;

• Three hours a week of preparation.

As is the case with all LAs at CU-Boulder, Mathe -
matics LAs attend a several-hour-long training session
during the first week of classes. Also like other LAs,
Mathe matics LAs earn a stipend of $1500 for the semes -
ter, and receive course credit for the School of Education
seminar.

Results from Initial Implementation 
of the LA Model

Coincident with the introduction of LAs into CU-
Boulder’s Calculus I recitations was the redesign of the
recitations themselves, toward a more student-centered,
discovery-based model wherein students work together
in small groups. Given the greater attention to group
activity in recitations, we reasoned that improved stu -
dent performance might have resulted not only from the
addition of an extra facilitator, but also from changes in
the nature of the instructional tasks that were being
facilitated. Perhaps the tasks selected were more con -
ducive to sustained group discussions and open to a
range of solution strategies.

Trends in Task Use
Using the criteria for student reasoning described
previously under Mathematical Competencies, two mathe -
matics graduate students who completed a graduate
level course in assessment design were asked to inde -
pendently analyze all instructional tasks that were used
in Calculus I recitations during the first three semesters
of program implementation. The initial interrater agree -
ment regarding the type of reasoning elicited was 71%.
After discussing several tasks exemplifying recall/
mem ori zation vs. connections/justi fi cation the inter-rater
agreement was 93%. The results from the second round
of their task analysis are sum marized in Table 1.

This summary reveals two trends in the use of tasks
over the first three semesters: a modest increase in the
use of application of derivative problems and a signi -
ficant increase in the percentage of tasks that promote
mathematical connections and justification. These trends
do not reflect intentional planning on the part of the
calculus supervisor or the TAs. Instead, it is more appro -
priate to attribute the trend to a shift in perceived needs
of calculus recitations.

Table 1

Percentage of task types used in Math 1300 recitations

Content Domain

Precalculus

Limits and continuity

Derivatives

Application of derivatives

Integrals

Reasoning Elicited

Recall/Memorization

Connections/Justification

43.3

18.6

15.5

6.2

16.5

68.0

32.0

40.8

19.4

13.6

10.7

15.5

63.1

36.9

42.5

19.8

13.2

9.4

15.1

57.5

42.5

Spring ‘08
n = 97

Fall ‘08
n = 103

Spring ‘09
n = 106

These data suggest the need for a deeper analysis of
student reasoning that is elicited by these tasks so that
we have actual evidence of student reasoning elicited
by such tasks, for those students who are making
satisfactory progress in calculus and those who are not.
The following sections describe specific design features
of tasks identified as eliciting “reasoning beyond recall.”
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Reasoning Beyond Recall
The problem in Figure 1 is selected from the set of
instructional tasks used in fall and spring 2008 reci -
tations. Part (a) is an example of a typical recall/
mem orization problem, using basic theorems and
trigono metric identities to solve for the derivative of a
given function. However, part (b) asks the student to
explain how two completely different solutions can
exist. Most calculus students run into this situation fre -
quently (checking answers to homework problems with
other students, the solutions manual, etc), but rarely do
they understand why both answers are different, yet
both are correct.

Building Mathematical Connections
In calculus, too often students are only concerned with
finding the derivative. They are given a function and
asked to perform familiar calculus procedures. However,
ask them why they would want to take the derivative,
and they are often stumped. Figure 3 describes a func -
tion, but does not define it with symbols. The students
are asked to connect their understanding of functions,
inverses, and derivatives to the average number of
emails sent per day in a given year.

Spring ’08 – Fall ’08, Worksheet 11, problem 4:

(a)  Confirm that (sin2x) = 2 sin x cos x = sin 2x

(b)  Your work in (a) verifies that one antiderivative of 
sin 2x is sin2x. Find an antiderivative of sin 2x that
involves the function cos 2x and explain how sin 2x
can have these two different antiderivatives. 

d
dx

Figure 1. Reconciling different solutions to 
the same problem.

Using Mathematics in Problem Contexts
Without a context, students tend to be less motivated,
thinking mathematics is meaningless (Yusof & Tall,
1999). Figure 2 is an example of a problem that suggests
that calculus is not just about plugging numbers into
formulas. Students must reason with one another to
conceptualize what happens if one portion of the prob -
lem is changed. They are being asked to fully under stand
how mathematics relates to situations outside of the
classroom.

Spring ’08 – Fall ’08 – Spring ’09, Worksheet 3, 
problem 3b:

Discuss quantitiatively (i.e., without actually solving the
problem) whether the lighthouse would be nearer to or
farther from the shore, relative to your answer in 3(a), 
if the only change to the above information is:

1.  The beam moves 500 feet down the shore in 4 seconds

2.  The beam rotates once every 90 seconds

3.  The beam moves 300 feet down the shore in 6 seconds

As a reference, here’s part (a): A lighthouse sits on a rock
offshore and its beam rotates once every 48 seconds.
Starting from the point on the shore nearest the light -
house, the beam moves 300 feet down the shore in 
4 seconds. How far is the lighthouse from the shore?

Figure 2. Calculus in context.

Spring ’09, Worksheet 6, problem 1:

Let g(t) denote the average number of email messages,
in millions per day, sent in Colorado in year t. What are
the units and interpretations of the following quantities?
(Write your answer next to the item.)

(a)  g(2007)

(b)  g′(2007)

(c)  g -1(2)

(d)  Do you think g′(2007) would be negative, zero, or
positive (explain your reasoning).

Anecdotal Reports of Student 
Engagement and Learning
In a traditional recitation session, a TA will work home -
work problems at the board, taking derivatives of
functions, for example, requiring little to no effort or
engagement from the students themselves. In an LA-
and-TA-led recitation, all students participate actively in
solving problems they have not seen before—problems
that are related to material seen previously, but foster a
deeper or broader understanding of that material. For
example, students are asked to sketch derivatives visu -
ally, and compare their results with the algebraic
formulas. The visual derivatives give students a tool for
self-correction, encourage mathematical intuition, and
provide a resource for visual learners.

The recitation activities also get Calculus students to
learn from, and with, their peers—the LAs, as well as the
group mates with whom they discuss and complete their
worksheets. From our observations of recitations, their
relatively unstructured and “casual” atmosphere as well
as the increased level of contact between the students
and the “teachers” (LAs and TAs) provides an environ -
ment in which the Calculus students are more interactive
and in which not only the expertise but also the
enthusiasm of the LAs and TAs towards mathematics is
better communicated to students.

Figure 3. Connections task.



Responses of LAs
We asked LAs a number of questions about their own
experiences. Most of these questions regarded the effect
of the LA program on the LAs, but we also asked one
question that addressed the LAs perceptions of their
impact on student learning: What effects do you believe
LAs have on the students in the courses using LAs?

Some of the responses that we received to this
question included:

• I think it helps them out more than they know. It
gives them someone to ask questions to, someone
they can relate to, and it helps relieve tensions for
the class.

• I think it is nice to have an undergraduate in the
classroom. The LA program provides for that here 
at CU-Boulder, which I think is awesome.

• LAs basically motivate students to learn because
they were sitting in the same class just like the
students a year or two years ago. That tells the
students that LAs were students just like them.

• I received a lot of feedback from students who said
that it was interesting being taught by someone their
own age who was really energetic about math. I also
think that a class with LAs also allows students to be
able to communicate with teachers who are their
own age. The LA experience is a great experience
both for students and the LAs.

• Our experiences are much more tangible than 
those of the TAs because we've taken the same
classes recently, we know the professors, and we
understand the ‘ life of the CU-Boulder undergrad.’

Toward Transformation of Department Culture

When the Mathematics Department Chair and Associate
Chair for Undergraduate Studies learned that some of
our best majors were working as LAs for other STEM
departments because we did not have our own LA
program, we decided it would be important to establish
one. The recent addition of LAs in the mathematics
department has gradually, but very noticeably, helped
transform the culture and the “life of the mind” in our
department. A number of mathematics faculty members
who are not typically inclined towards thinking about
pedagogy or issues in mathematics education have
noticed that the ranks of mathematics LAs include some
of the very best students from their upper-division “pure
math” courses. When faculty learn more about the LA

program, and about what LAs learn and teach, their
respect for teacher training and education research grows.

Also, the very apparent enthusiasm of the Mathe -
matics LAs, as well as the LA-fueled improvements to
our Calculus I course, have piqued the interest of a
number of faculty, so that we now have more faculty
interested in using LAs in their own courses. Of course,
one has to find a place for these LAs, and the directors
of the CU-Boulder LA program encourage faculty
applicants for LAs to use them in innovative ways that
truly enhance the learning experiences of the students in
the affected courses. Thus, more departmental faculty
have become interested in course transformation, curri -
culum development, and, more generally, in thinking
about what and how we are teaching.

The LAs are also an intellectual resource for the
department—graduate students as well as faculty.
Indeed, the LAs provide pedagogical perspectives and
ideas—many of which they glean through their School
of Education seminar—that are useful and novel to the
more “traditionally” trained contingency of the Mathe -
matics Department.

Summary

The authors, the mathematics faculty who have worked
with LAs (and many who haven’t), and a variety of others
associated with the department’s LA program believe
strongly that Learning Assistants have improved the
teaching, learning, culture, and atmosphere of the depart -
ment in substantial ways. This belief is supported by the
improvement in D/F/Withdraw rates, the task analysis,
the LA responses, and the other evidence cited above. It
is also consistent with documented evidence of LA
effectiveness in other science departments (e.g., Otero,
Finkelstein, McCray, & Pollock, 2006; Pollock & Finkel -
stein, 2008; Smith, Wood, Adams, Wieman, Knight,
Guild, & Su, 2009).

Further analyses, entailing deeper, broader studies of
student understanding, student success, departmental
attitudes, and the like, are warranted, and are currently
being completed by CU-Boulder Department of Mathe -
matics and School of Education faculty. 

In learning, some six or seven years ago, of LA pro -
grams in other units on campus, we asked ourselves,
“Why isn’t our Math Department doing this?” Now that
we are, we encourage college and university mathe matics
departments nationwide to ask the same question.
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