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ABSTRACT We present in this paper a pair of approaches to support mathematics educators and
learners in formulating original tasks. In particular, we facilitate the posing of rich mathematical
problems by using two novel methods that were created by a mathematics department at a K-12
school in the United States, and further developed alongside our students as well as a wider
professional learning team of master teachers. We situate our work within the broader literature
on mathematical problem posing and describe our strategies by including examples of their use
in generating problems and by providing examples of authentic student-assigned tasks that were
created with our approaches. 
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Inverted Tasks and Bracketed Tasks in 
Mathematical Problem Posing

Benjamin Dickman
The Hewi! School

Introduction

The literature on mathematical problem posing can be
traced back at least to Polya’s (1945) “How to Solve It,”
for which many of the heuristics around problem solv-
ing involve the asking of questions: What is a related prob-
lem? What is a simpler problem? How can the problem be
generalized? The observation that problem solving in-
volves posing, or reformulating, problems dates back at
least to another work of the same year as remarked by
Kilpatrick in Schoenfeld (1987, p. 125):

Wherever the problem comes from, the problem
solver is always obliged to reformulate it. In fact, as
Duncker (1945) pointed out, one can think of problem
solving itself as consisting of successive reformula-
tions of an initial problem.

Other classical works on problem posing include Sil-
ver’s (1994) article that connects problem posing with
creativity, and Brown and Walter’s (1983) treatise, “The
Art of Problem Posing,” in which an explicit model is
described for modifying a given scenario (e.g., the graph
of y = x2 + 6x + 9) to create original problems: attribute
listing, which involves writing out the various traits and
characteristics of the initial setup (e.g., this quadratic

function has one real root; the y-intercept is at y = 9);
what-if-not-ing, which involves the new scenarios pro-
duced by asking about the changes effected if an attrib-
ute were assumed not to hold (e.g., What if the quadratic
function had two real roots? What if the y-intercept were
not 9?); and cycling, which involves combining multiple
variations on a scenario to create a novel problem (e.g.,
What is a quadratic function that has two distinct real
roots and a y-intercept at y = 8?).

We build on this earlier work with a pair of ap-
proaches to problem posing: the first approach, which
we refer to as inverted problem posing, involves a new per-
spective on the relation between inputs, outputs, and
methods/algorithms in mathematics courses; the second
approach, which we refer to as bracketed problem posing,
involves an approach to encouraging problem posing
among teachers and learners of mathematics, and which
we have incorporated into our own assessments. In
doing so, we aim to answer the call of Kilpatrick that
“problem formulating should be viewed not only as a
goal of instruction, but also as a means of instruction.
The experience of discovering and creating one’s own
mathematics problems ought to be part of every stu-
dent’s education” (1987, p. 123).



Inverted Problem Posing
We begin (see Figure 1) by characterizing three different
approaches to mathematical problems in terms of their
input (what is given), method of solution (technique or
algorithm), and output (result of running the input
through the method). For example, the input could be
“4 and 6,” the algorithm could be one to find the least
common multiple (LCM), and the output would, there-
fore, be LCM(4,6) = 12. In traditional approaches to teach-
ing mathematics, instructors might teach a method first
(e.g., related to the prime factors) and then have students
practice by giving them lots of inputs (here, lots of num-
ber pairs); so, the inputs are given, the method is known,
and various outputs are found through a sequence of
exercises. In a problem solving approach, instructors
may set up an exploration in which the inputs are given
or can be chosen, and students can find specific outputs.
The challenge for students becomes the creation of al-
gorithms or methods, scaffolded as necessary, to gener-
alize their solution technique; so, individual inputs and
outputs are available, but the method is to be found
through investigation. For example, students may com-
pute the LCM of many pairs of numbers and look for
patterns to develop an algorithm that yields the LCM in
general. We use inverted problem posing to refer to a dif-
ferent model: once students have understood a method,
we provide sample outputs and ask for the possible in-
puts. For example, rather than providing natural num-
bers a and b for which LCM(a,b) = 12, we ask: Given that
LCM(a,b) = 12, what could be the values of a and b? One
consequence of this approach to problem posing is that
the inversion may produce multiple inputs; in our ex-
ample here, we could have, e.g., a = 4 and b = 6, or a = 2
and b = 12. Further employing Brown and Walter’s (1983)
scheme (what if there were not multiple answers?) can
allow one to formulate problems with unique answers:
one workaround is simply to ask for the set of all possible

solutions; another approach is to impose additional con-
straints, e.g., for what a and b satisfying LCM(a,b) = 12
do we minimize a + b?

One of the advantages of inverted problem posing is
that instructors can deploy this strategy whenever a
problem has been solved, or an attribute has been
noticed. For example, we used the Brown and Walter
(1983) scheme to phrase our formulation of an earlier
problem: What is a quadratic function that has two
distinct real roots and a y-intercept at y = 8? This required
a combination of attribute listing, what-if-not-ing, and
cycling. The same question could, instead, be viewed as
an inverted problem from the routine question, “What
are the two roots and y-intercept of the quadratic function
y = x2 + 6x + 8?” Moreover, we can notice and incorporate
additional features of this parabolic curve to pose richer
problems. For example, the x-intercepts in this graph
are at x = –2 and x = –4; so, they have a distance of 2 be-
tween them as measured along the x-axis. Given this
additional observation, we may now consider the inverted
problem that asks, “What is a quadratic function that
has x-intercepts that are 2 apart, and a y-intercept at 
y = 8?” We can further enrich the problem by asking for all
the quadratic functions that satisfy these criteria. Calling
one root p, we have roots p and 2 + p. Thus, the quadratic
function has the form y = a(x – p)(x – (2 + p)), which has
constant term ap(2 + p) = 8, i.e., a = 8 / (p(2 + p)). An
animated graph of this function, for which the parameter
p varies between –5 and 5, can be found on Desmos
[https://www.desmos.com/calculator/tr8yrpqalh]. In this
way, we have taken the common context of quadratic
functions and observations around standard features of
their graphs, x-intercepts and the y-intercept, and inverted
this information so as to pose a non-routine problem
with a low-floor (e.g., give one example) and high-
ceiling (e.g., parameterize all such functions).
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Figure 1
Models of Problem Exploration, from Left to Right: Traditional, Problem Solving, Inverted



Bracketed Problem Posing
The second method of problem posing described here
also builds outwards from standard problems. The gen-
eral idea is captured by the following directions, which
have been used across courses ranging from middle
school algebra to high school calculus at the author’s in-
stitution, as well as by additional master teacher fellows
who attended a professional development course [“Prob-
lem Posing in Algebra Assessments”] co-facilitated by
the author through the organization Math for America.

Directions: For each of the following problems, please
change only the portion in brackets to: (1) create a
similar problem; (2) solve your similar problem; and
(3) explain briefly how your problem is similar to the
original.

The goal with these directions is to scaffold student
problem posing by providing a framework within which
they can create their own problems and encourage stu-
dents to attend to structural rather than superficial fea-
tures of mathematical tasks. The problem we developed
in our previous question could be bracketed for students
as follows:

Show that the two x-intercepts of the graph of the
quadratic function y = [1]x2 + [6]x + 8 have a distance
of 2 between them as measured along the x-axis.

The placement of the brackets is nontrivial and re-
quires teacher expertise in thinking through what the re-
sulting solution set might look like, how difficult the
resulting problem is, and the potential for student mis-
understanding of what is being asked. In the example
above, directly answering the question is only a matter
of finding the real roots (e.g., by factoring) and then ver-
ifying that they have a difference of 2. Much more chal-
lenging is for students to think through how the degree
2 and 1 coefficients can be chosen to yield another quad-
ratic with real roots that differ by 2. In some cases, this

may lead students into an exploration that looks more
like our high-ceiling parameterization of the previous
section; for others, finding a solution might involve play-
ing with the constraints (e.g., observing y = x2 – 1 has real
roots that are 2 apart and multiplying through by –8 to
get the desired y-intercept but not change the x-inter-
cepts, i.e., using the quadratic y = –8x2 + 8 as a solution).
The considerations of where to incorporate bracketed
tasks into a curriculum, how to grade or otherwise use
summative assessments (if at all) of student work, and
ways of formulating these tasks as a function of teacher
goals all fall outside the scope of this brief paper. Instead,
we close with a bracketed Algebra 2 examination that
was given to students; sample copies of student work
are available by request, as are corresponding materials
from the professional development course referenced
previously.

PROBLEM 1: A polynomial with degree 4 has imag-
inary roots [2i and 3i]. Give two different possibilities
for the polynomial; ensure that your examples do not
both have the same end behavior.

PROBLEM 2: Carry out the following polynomial 
division, by a quadratic expression, by hand in any
manner that you wish, and verify that the quotient
has a remainder of zero:                                                  
[(x6 + 3x5 - 3x3 + 6x2 + 9x + 2) ÷ (x2 + 3x + 2)]

PROBLEM 3: Explain carefully which of the follow-
ing two questions you would prefer on an in-class
test, but you do not need to answer either of them.

QUESTION A: Find all the rational roots of                
[f(x) = x5 – x4 + 2x3 – 5x2 + 1]

QUESTION B: Find all the rational roots of                 
[g(x) = 2x3 – 2x + 12]

Figure 2

Two Bracketed Graphs of Functions Expressible as y = a(x – h)1/n + k
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PROBLEM 4: Write down radical functions corre-
sponding to the two graphs in Figure 2 and explain
carefully how you arrived at your answers. Consider
the entire graphs bracketed!

Conclusion

In this paper, we named and briefly discussed two ap-
proaches to problem posing: inverted tasks and brack-
eted tasks. The former involves a reframing of how tasks
are created in mathematics classrooms that is situated
outside the binary of traditional instruction (tell meth-
ods, complete exercises) and certain problem solving al-
ternatives (explore problems, discover methods). The
latter involves a scaffolded approach to support student
problem posing that encourages learners to focus on
structural, rather than superficial, problem features. Our
discussion of each is incomplete, and we look forward
to developing and refining both—in theory, in practice,
and in writing—as our thinking further evolves.

References

Brown, S. I. & Walter, M. I. (1983). The art of problem
posing. Erlbaum Associates.

Kilpatrick, J. (1987). Where do good problems come
from. In A. H. Schoenfeld (Ed.), Cognitive science
and mathematics education (pp. 123-148). Erlbaum
Associates.

Polya, G. (1945). How to solve it. Princeton Press.
Silver, E. A. (1994). On mathematical problem posing.

For the Learning of Mathematics, 14(1), 19-28.

Author’s Note
This article was written for Topic Study Group 17, “Prob-
lem posing and solving in mathematics education,”
which was to be chaired by Teachers College alum Ed-
ward A. Silver at ICME-14 in Shanghai, China, during
the Summer of 2020. However, the quadrennial Inter-
national Congress on Mathematical Education has been
postponed by at least a year due to the ongoing COVID-
19 pandemic. As a bit of background for this 10th an-
niversary issue of the Journal of Mathematics Education
at Teachers College: I arrived as a new doctoral student
at Teachers College one decade ago, after spending the
better part of the previous two years living in Nanjing,
China, which I first called home during a 2008-09 Ful-
bright Fellowship to research Chinese mathematics
teacher education. I am grateful to have had the oppor-
tunity, supported initially by the US Department of
State, to live in China and form deep friendships during
my time abroad. I am grateful to Teachers College for

supporting me as an instructor for the graduate course
“Teaching Mathematics in Diverse Cultures” while
bringing a cohort of doctoral students to Shanghai dur-
ing a study tour in Summer 2013. I am grateful to my
present institution, The Hewitt School, for supporting
me in language education studies at Nanjing Normal
University in Summer 2017. It is within this context that
I must also articulate my deep concern about the xeno-
phobic/Sinophobic and racist rhetoric from United States
politicians who were ostensibly elected to lead. My sin-
cere hope is that when we look back in another decade
we will see great progress and meaningful structural
change, and that the present modes of targeting and oth-
ering individuals based on their identities—including, but
not limited to, Asian Americans who have faced a recent
uptick in hate crimes—will diminish. Yet, hope is sustained
by shifting from thought to action, and few actors can be
as powerful—and empowering—as educators.

Benjamin Dickman, April 15, 2020
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