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Figure 1. Similar Rectangles task Figure 2. Incorrect response using a framing argument 

The Frame Game 

Michael Todd Edwards 
Dana C. Cox 

Miami University at Oxford, Ohio 

In this article, the authors explore framing, a non-multiplicative technique commonly employed by students as 
they construct similar shapes. When students frame, they add (or subtract) a “border” of fixed width about a 
geometric object. Although the approach does not yield similar shapes in general, the mathematical 
underpinnings of framing are noteworthy. Using Interactive Geometry Software (IGS), teachers can explore 
mathematics behind the framing technique in greater depth while addressing student misconceptions and over-
generalizations associated with the approach in classroom settings. 

Keywords: student misconceptions, geometry, proportionality, technology, similarity. 

Introduction 

During our first years as introductory geometry 
teachers, we were genuinely surprised by misconceptions 
that our students exhibited as they attempted to identify 
and construct similar shapes. “Similar shapes? That should 
be easy!” we thought. “Similar objects have the same 
shape. That's it. What's so hard about recognizing objects 
with the same shape?” However, through our teaching 
experiences with students in entry-level courses, we've 
come to appreciate the complexity embedded within 
similarity tasks. Growth tasks—geometric situations 
involving the scaling of objects—have proved particularly 
challenging for younger students (Lamon, 1993) and 
secondary students alike. Success with growth tasks 
requires students to apply multiplicative strategies and 
proportional reasoning; however, struggling students tend 
to approach such problems using non-multiplicative 
methods (Lamon, 1993). Consider, for instance, the 
Similar Rectangles Task, a growth task shown in Figure 1. 
Successful students use multiplicative reasoning to 

determine that the rectangles in Figure 1 are not similar. 
For instance, since the ratios of heights and widths from 
large to small rectangle are not equivalent (5/3 ≠ 15/13), 
corresponding sides of the rectangle are not proportional. 
In other words, there is no size change transformation that 
maps one rectangle onto the other. 

In spite of this, a significant portion of our students 
copy the smaller rectangle within the larger one, 
employing a non-multiplicative technique that we refer to 
as framing. An example of the approach is illustrated in 
Figure 2. Intrigued by the popularity of framing as a 
method for identifying and constructing similar shapes, we 
decided to explore its mathematical underpinnings in more 
depth, hopeful that such study would provide insight 
regarding the attractiveness of framing for our students as 
well as possible teaching strategies to help our students 
overcome the urge to use the technique inappropriately. 
Findings from our investigation have informed our 
teaching—and thus our students' understanding of 
similarity and proportionality. In the remainder of this 
paper, we examine the framing technique more formally 
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Figure 3. Framing applied to a square with side length s units 

 

Figure 4. The framing process applied to various regular polygons 

and share a model for incorporating Interactive Geometry 
Software (IGS) to address student misconceptions 
associated with framing. 

The Framing Technique 

We define framing as the process of adding (or 
subtracting) a “border” of fixed width about a geometric 
object. Why is this technique so convincing for students 
and so difficult for teachers to extinguish? To answer such 
a question, we need to determine shapes that yield similar 
images when framing is applied (if any exist). To help 
extinguish use of the technique, we also need to find 
various shapes that yield obviously dissimilar objects when 
framing is applied. In this way, we hope to craft 
opportunities for students to examine and evaluate the 
strategy autonomously. 

To our initial surprise, framing works well for a 
variety of familiar shapes. Consider, for instance, a square 

with side s. Attaching paper strips of width w along each 
edge of the square yields a larger square, as shown in 
Figure 3. The paper strips yield sides parallel to those in 
the original shape, thus right angles are preserved. 
Furthermore, sides of the resulting frame (shown as dotted 
segments in Figure 3) are proportional to the sides of the 
original square, at a ratio of s+2w to s. In general, squares 
are similar to squares. Hence, the resulting framing square 
is similar to the original framed square. A general 
argument reveals that the framing process yields similar 
figures for any regular polygon. For instance, the framed 
and framing pentagons in Figure 4 are similar—so, too, are 
the regular hexagon and regular octagon pairs. Because 
student work with geometric shapes, particularly in the 
early grades, focuses on regular figures, it is not surprising 
that framing is an attractive (albeit incorrect) technique for 
entry-level students. In the following section, we provide a 
general argument confirming framing as a valid technique 
for producing similar regular polygons. 
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Figure 5. Consecutive, overlapping framing 
strips for arbitrary, regular n-gon 

Figure 6. Quadrilateral formed consecutive 
cut, rectangular framing strips 

 

Figure 7. Cut framing strips for several regular n-gons 

General Proof of Applicability of Framing Method 
for Regular Polygons 

Corresponding angles are congruent. Given a regular 
n-gon with side length s, we first show that the angles of 
the resulting shape obtained from framing are congruent to 
corresponding angles in the original n-gon. Begin by 
considering consecutive, congruent framing strips with fixed 
width w intersecting at arbitrary vertex W. The overlapping 
strips form quadrilateral WAYB. As illustrated in Figure 5, 
we let α represent the measure of the interior angle of the 
regular polygon at W; and we let γ represent the measure of 
angle AYB. We show that α = γ. As Figure 6 illustrates, 
consecutive overlapping strips can be cut into rectangles that 
intersect at precisely one point, namely W. Points X and Z 
are vertices of the cut rectangular strips. 

We let β represent the angle formed by cut strips 
intersecting at W. Note that β = 360º - (α+90º+90º) = 180º - α. 
Since WXYZ is a quadrilateral, β+90º+90º+γ=360º. 
Substituting 180º - α for β in the previous equation, we 
note that (180º - α)+90º+90º+γ=360º which yields α = γ. 
Employing an analogous argument at each of the other n-1 
vertices, we conclude that interior angles of the original 
framed polygon are congruent to corresponding angles of 
the framing polygon. 

Corresponding sides are proportional. Next, we argue 
that sides of the framing polygon are proportional to sides 
of the original regular n-gon. As Figure 7 suggests, the 
framing strips may be cut to form congruent rectangles. 
The length of each cut framing strip equals s, the side 
length of the original regular n-gon. 

At arbitrary vertex W, quadrilateral WXYZ is split 
into two right triangles by diagonal WY, as shown in 
Figure 8. By reflexivity, segment WY is congruent to 
itself. Furthermore, segments WX and WZ are congruent 
since the width of each framing strip is the same. By the 
Pythagorean Theorem, segments XY and ZY have the 
same length—call this x units. Using an analogous 
argument at each vertex of the original n-gon, we conclude 
that the length of each side of the framing n-gon is s+2x 
units. Hence, the corresponding sides of the framing 
polygon are proportional to sides of the original regular n-
gon with ratio s+2x to s. 

Since (1) the angles of the shape resulting from 
framing are congruent to corresponding angles in the 
original n-gon and (2) the corresponding sides of the 
framing n-gon are proportional to sides of the original 
regular n-gon, we conclude that the framing approach 
yields similar shapes for regular n-gons. 
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Addressing Student Misconceptions 
Associated with Framing 

Unfortunately, the framing process does not yield 
similar shapes for non-regular figures and numerical 
arguments are often too abstract to be convincing. We 
have found that it is more productive to appeal to a visual 
argument since, in our experience, students have some 
intuition about what proportional shapes should look like 
and can sense when distortion is present. For example, 
when using the framing technique to scale a heart shape, 
Emerald generated a series of concentric hearts. She wrote 
at the bottom of her paper, “I know its not right.” It 
occurred to us that Emerald’s use of visual evidence to 
judge the similarity of the constructed hearts was a 
powerful tool; a tool that we wanted to develop more 
formally in the classroom. Iterative framing, illustrated in 
Figure 9, challenges students’ additive strategies; however, 
additive thinking is remarkably resilient (Hart, 1988). In 
paper-and-pencil scaling tasks such as the Two Hearts 
task, students are often more willing to challenge their own 
drawing skill than the mathematics behind the strategy. 
Even after students explore framing and identify shapes on 
which it would and would not work, it may still be unclear 
that framing is an additive strategy. Technology, 
particularly IGS can help us overcome this hurdle by 
allowing students more freedom to test mathematical 
conjectures in a precise environment. 

Based on these experiences, we developed a three-
stage approach to using interactive geometry software 
(IGS) to investigate the framing technique and support 
students in moving away from additive thinking. First, we 
formalize and refine students’ visual intuitions by using 
IGS to test the similarity of two pre-existing geometric 
objects. Second, we incorporate iteration into our lesson to 
help students confront deeply-held misconceptions 
surrounding the validity of framing as a technique for 

constructing similar shapes. Last, using IGS, students 
construct proportional shapes from provided pre-images 
and analyze the existing multiplicative relationships. We 
discuss each step of this process with more detail and 
illustration in the sections that follow. 

Stage 1: Testing the Similarity of Framed Images 

In this stage, students are presented with two pre-
existing geometric objects and are asked to determine 
whether the objects are similar. For instance, the sketch 
depicted in Figure 10 asks students to determine if the grey 
octagonal borders in the logo are similar. An interactive 
version of the dynamic sketch is available on-line at 
http://tinyurl.com/logosketch. Clicking on the “Show 
slider” checkbox reveals a slider that controls the scale 
factor of a dilation of the “inner” grey octagon. When the 
value of the slider is increased, the “inner” octagon grows 
larger; when the value is decreased, the “inner” octagon 
shrinks. Through experimentation, students find that a 
scale factor of 1.6 (depicted in Figure 10, right) produces a 
dilation of the “inner” octagon that has the same height as 
the “outer” grey octagon. Since the two shapes have the 
same height but different widths, students conclude that 
the dilation and the “outer” octagon aren't similar. Since 
the dilation is similar to the inner octagon, they conclude 
that the “inner” and “outer” octagons are not similar. 

In the testing stage, IGS offers students several 
advantages over traditional paper and pencil work. First, 
the sketches encourage students to consider similarity from 
a geometric vantage point (as opposed to a purely 
numerical view often emphasized in worksheet activities). 
Second, as students change scale factors of dilations within 
dynamic sketches, they are encouraged to consider similar 
shapes as pre-image and image of a size-change 
transformation. 

 

Figure 8. Quadrilateral WXYZ split into 
two right triangles by diagonal WY  

Figure 9. Emerald’s Framed Hearts 
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Figure 10. (Left) Dynamic logo investigation; (Right) Logo with dilated “inner” octagonal border 

 

Figure 11. Dynamic version of the Similar Rectangles task 

Stage 2: Confronting Misconceptions 
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Figure 12. (Left) Dynamic sketch allows rectangles to be repositioned; (Right) Text embedded within rectangles 

 

Figure 13. (Left) Iterated framing process; (Right) Sketch with intermediate frames hidden 

Stage 2: Confronting Misconceptions 

When framing is used on non-polygons, it introduces 
distortion. In Stage 1, we helped students become more 
aware of that distortion. It is more difficult to detect that 
distortion when working with simple polygons such as 
rectangles and triangles. In Stage 2, we challenge students 
to see more nuanced versions of that distortion and 
conduct more rigorous mathematical analysis of the 
technique in two ways. First, placing a graphic object (e.g., 
text or a digital photo) within a non-square rectangle prior 
to framing may help students recognize that framing 
doesn't work in harder-to-recognize shapes. The dynamic 
sketch in Figure 11 initially shows a 3 x 13 rectangle and 
5 x 15 rectangle. An interactive version of the sketch is 
available online at http://tinyurl.com/affront-sketch. 

Using the transformational features of IGS, students 
drag the lower left vertices to re-position the rectangles as 
frames. Dragging the remaining vertices, students stretch 

the framing rectangle (and enclosed graphic) vertically and 
horizontally in an effort to construct similar shapes. As 
suggested in Figure 12, clicking on the “show text” 
checkboxes reveals a graphic element embedded within 
each rectangle. After some experimentation, many students 
note that the text in the two rectangles (particularly the o's) 
appears “different” for any pair of rectangles. Text within 
the framing rectangle appears to be stretched. Distortion, 
such as that depicted in Figure 11, provides compelling 
evidence that framing fails to yield similar rectangles 
(Cox, 2010). 

Second, IGS allows students to apply the framing 
process repeatedly to an initial rectangle, forming 
“concentric” shapes (Cox and Edwards, 2011). Such a 
process is depicted in Figure 13, left. In the sketch, 
successive frames are two units taller and wider than the 
next largest shape. Note that with each successive 
iteration, the outer-most frame becomes more “square-
like.” Clearly, for this reason, the initial rectangle and 
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Figure 14. Ellipse passing through points A(-4,0), B(0,2), C(3,1), D(4,0), 
and E(0,-2). 

 

Figure 15. A line is drawn through the center of dilation, P, and each of five 
points on the pre-image. 

outer-most frame are not similar. As Figure 13, right, 
suggests, hiding intermediate frames within the sketch 
makes the result more obvious. Since the rectangles in 
Figure 13 were produced using a framing approach, the 
process casts doubt on framing as a legitimate strategy for 
producing similar shapes. An interactive version of the 
sketch is available online at http://tinyurl.com/repeated-
framing. 

As the preceding examples illustrate, common 
misconceptions regarding framing may be addressed using 
IGS. The software allows sketches that are more precisely 
and more quickly drawn than possible with paper-and-pencil 
alone. Moreover, dynamic features of the sketches afford 
students significant opportunities for experimentation. 

Stage 3: Constructing Similar Shapes 

Constructivism tells us that students need 
opportunities to construct their own similar shapes (if we 
want them to truly grasp similarity). In our classes, 
students use three basic strategies for constructing similar 
shapes with IGS: 

1. Manual dilation (e.g., choosing center of dilation, 
drawing lines from key points of pre-images); 

2. Scaling and plotting of coordinates stored in lists; 
and 

3. Using a geometric dilation tool. 
In this stage, we typically provide students with novel 
shapes to explore with IGS. From our previous work, we 
know that the framing technique is a convincing method 
for constructing similar shapes because the approach 
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Figure 16. Constructing A', the dilation image of A about center P with 
scale factor, k. 

 

Figure 17. Similar ellipse centered at P passing through points A', B', C', D' 
and E'. 

 
works for a variety of familiar shapes—namely, regular 
polygons and circles. If we desire to help students build 
robust understandings of proportionality—one which 
rejects the framing technique as a general method for 
constructing similar shapes—then we need to provide 
students with non-typical examples for which the framing 
strategy fails and encourage the development of 
multiplicative strategies with novel shapes. Consider, for 
instance, the ellipse passing through points A(-4,0), B(0,2), 
C(3,1), D(4,0), and E(0,-2) shown in Figure 14. Students 
are asked to construct one or more ellipses similar to the 
original using tools available within IGS. We highlight 
solution methods using the three basic techniques 
mentioned in the preceding paragraph. 

Manual Dilation. Manual dilation techniques within 
IGS mimic pencil-and-paper methods used for dilating 
figures using ruler and compass. Students begin by 
constructing a center of dilation (depicted as point P in 
Figure 15). Next, lines are drawn from the center to key 
points on the pre-image (in our case, the five known points 
A, B, C, D, and E on the original ellipse). 

Next, we construct a scale factor (in our case, 
represented by slider, k). Point A', the dilation of A about 
P, is constructed using a circle centered at Point P. A' is 
constructed such that k•PA = PA' with A' on line PA. This 
is suggested in Figure 16. An analogous method is used to 
construct dilation images B', C', D' and E'. 
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Figure 18. Constructing a dilation using lists in GeoGebra 

To complete the manual dilation, as shown in 
Figure 17, lines are hidden. Using conic construction tools, 
a scaled ellipse is constructed through points A', B', C', D' 
and E'. Point P and slider k may be manipulated, allowing 
students to investigate various similar ellipses with 
different centers and scale factors. 

Scaling and Plotting. Alternatively, dilation images of 
points A, B, C, D, and E can be constructed using lists. 
First, a list of pre-image points, pimage, is created with the 
command pimage = {A,B,C,D,E} in the GeoGebra input 
bar. Next, the list of image points, image, is created by 
premultiplying the pre-image points with scale factor, k, as 
shown in Figure 18. In addition to creating a list of image 
points dilated about the origin with scale factor k, the 
command Image = k*Pimage also plots these points. Using 
conic construction tools, a scaled ellipse is constructed 
through points A', B', C', D' and E'. 

Geometric Dilation Tool. Lastly, students can construct 
similar ellipses using the geometric dilation tool within 
GeoGebra. First, center of dilation, P, is constructed along 
with scale factor (in our case, represented by slider, k). 
With the dilation tool selected, students click on the pre-
image ellipse and center of dilation and then specify k as 
the scale factor. The results appear identical to those in 
Figure 17. 

We've found IGS-based dilation exercises helpful for 
encouraging students to consider the construction of 
similar shapes as a multiplicative process. Manual dilation 
and scaling lists both require students to multiply objects 
by scale factor k. Using dynamic capabilities of the 

software, students may drag points to explore countless 
similar shapes with the click of a mouse. As students 
construct similar versions of irregular shapes using each of 
the three methods, they recognize that in no case is the 
resulting figure a frame of the original. Furthermore, once 
students represent scaling in the language and symbolism 
of dilation, it is possible to return to the framing strategy 
and examine its additive structure more carefully. After a 
more conceptual approach, the numeric arguments become 
more convincing and less abstract. 

Conclusion 

In this article we have begun to explore similarity 
from a new perspective that incorporates novel figures 
(e.g., logos, oblique ellipses, shapes with graphical 
elements) and IGS technology. This perspective moves us 
beyond problems that seek to boil down the concepts of 
scale to rote numerical procedures toward lessons that 
capitalize on existing experience and understanding that 
students already have. The tasks presented here have been 
used to further what students understand, but also to help 
them rigorously and scientifically challenge it. In our 
experience, children and adults alike are genuinely 
surprised by their exploration of the framing strategy and 
are interested in identifying the conditions under which 
framing could work. Perhaps the biggest benefit to this 
work is the opportunity to capitalize on student curiosity 
and the element of mathematical surprise. 
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