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Toward A Coherent Treatment of Negative Numbers

Kurt Kreith 
Al Mendle

University of California, Davis

The transition from whole numbers to integers involves challenges for both students and teachers. Leadership in 
mathematics education calls for an ability to translate depth of understanding into effective teaching methods, 
and this landscape includes alternative treatments of familiar topics. Noting the multiple meanings associated 
ZLWK�WKH�KRUL]RQWDO�EDU�WKDW�LV�RIWHQ�UHIHUUHG�WR�DV�³PLQXV�VLJQ�´�WKH�DXWKRUV�LQWURGXFH�D�QRYHO�QRWDWLRQ�LQWHQGHG�WR�
DGGUHVV�WKLV�DPELJXLW\��,Q�WKLV�V\VWHP��WKH�V\PERO�³í´�LV�UHVHUYHG�H[FOXVLYHO\�IRU�VXEWUDFWLRQ��7KH�IRXU�DULWKPHWLF�
operations and the concept of a number’s opposite are then illustrated in light of such a notational shift. A valuable 
DVSHFW� RI� WKLV� H[FXUVLRQ� LV� WKDW� LW� HQFRXUDJHV� WHDFKHUV� WR� UHÀHFW� RQ� WKH� UHODWLRQVKLS� EHWZHHQ� VRPH� LPSRUWDQW�
mathematics and the pedagogical approaches they now use.

Keywords: whole number, integer, subtraction, additive inverse, structural integrity

Leadership in mathematics education calls for both 
mastery of the subject and an ability to translate depth of 
understanding into effective instruction. These skills should 
enable a leader to discern particularly informative approaches 
to the solution of a problem, the proof of a conjecture, and 
similar activities of fundamental importance. By way of 
example, leaders in mathematics education are likely to 
express a preference for “divide and average” (Kreith & 
Chakerian, 1999, pp. 1–55) as a method for approximating 
VTXDUH�URRWV��1RW�RQO\�LV�WKLV�PRUH�HI¿FLHQW�WKDQ�WKH�RSDTXH�
algorithms that are sometimes taught, it also constitutes a 
pre-calculus introduction to Newton’s method, one that can 
be extended to the calculation of n-th roots and the solution 
of polynomial equations.

Leaders can also bring their skills to bear in the 
development of alternative treatments of common curricular 
topics, such as negative integers. The transition from whole 
numbers to integers can be a challenging one for both student 
DQG� WHDFKHU�� 7KH� GLI¿FXOWLHV� LQYROYHG� LQ� DFFRPPRGDWLQJ�
“negative numbers” are illustrated by the problem

Express � �3 5� � �  as an integer.
While there exist a variety of techniques for helping students 
arrive at the answer 8, rarely is it acknowledged that the 
problem being posed uses the “minus sign” in three different 
ZD\V�� :RUNLQJ� OHIW� WR� ULJKW�� WKH� KRUL]RQWDO� EDU� SUHFHGLQJ�
the parenthetical expression calls for taking the opposite of 
that expression; the bar preceding the symbol 3 is part of 
our representation of the integer “negative three”; the bar 
preceding the 5 calls for subtraction of the number 5 from 
negative three.

Providing leadership is this situation can also be a 
challenging task. Colleagues seeking help are likely to be 
looking for practical tools that can help their students solve 

textbook problems. Even with such tools at hand, teachers 
should be prepared to deal with conceptions of negative 
numbers that students may have developed on their own. 
$QG�ZKLOH� WKH�&RPPRQ�&RUH� 6WDQGDUGV� HPSKDVL]H� XVH� RI�
the number line to help students and teachers navigate these 
stormy seas, they contain little guidance on how to achieve 
consistency and coherence in problems such as the one posed 
above.

In this situation, a willingness to go to the mathematical 
roots of the problem may be a crucial aspect of leadership. 
For while a formal account of the transition from whole 
numbers to integers is not part of the K–12 curriculum, an 
ability to relate pedagogical tools to their theoretical roots 
can be enlightening.

Negative Numbers Revisited

The addition and multiplication of whole numbers allow 
for simple and mathematically sound representations. The 
equation 5 3 8�   can be explained in terms of the union of 
disjoint sets of cardinality 5 and 3. The equation 5 3 15u   
FDQ� EH� DUULYHG� DW� LQ� WHUPV� RI� UHSHDWHG� DGGLWLRQ�� 2XU� ¿UVW�
encounter with negative numbers tends to be associated with 
“take away” and equations such as 5 3 2�  .

Given such equations, the need for negative numbers 
arises in seeking a solution to problems such as 3 5 ?�  . 
Even here, the solution 3 5 2�  �  uses the symbol “െ” in 
two different ways. While there have been efforts to address 
this kind of ambiguity by writing 3 – 5 = -���VXFK�UH¿QHPHQWV�
tend not to be strictly imposed.

One way of bringing order to this situation is to associate 
the integers

^ `         I ... , 3, 2, 1, 0, 1, 2, 3, 4, ... � � �

Override (Hidden running head text):
Kreith, Mendle
Toward A Coherent Treatment of Negative 
Numbers
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with the subtraction problems that give rise to them as 
solutions. But in light of the corruption that the “minus sign” 
has undergone, let us agree to use a vertical bar “|” in place 
RI� WKH� VKRUW� KRUL]RQWDO� EDU� ³í´� WR� ZKLFK�ZH� KDYH� EHFRPH�
accustomed. In such a system, the integer “negative two” can 
be written as 3 | 5 or 4 | 6  or 17 |19  or any ordered pair of 
whole numbers in which the second is two greater than the 
¿UVW�

By way of making this notation intuitive, we can think 
of an integer N A | B  as the net worth of a portfolio with 
assets A and liabilities B, where A and B are whole numbers. 
Such an interpretation may also lead us to use an equal sign to 
express the equivalence of two portfolios. More generally, it 
may lead us to write 3 | 5 4 | 6 17 |19   on the grounds that 
these very different looking symbols all represent the same 
value “negative two.”

In the context of such an interpretation, it becomes 
UHDVRQDEOH�WR�GH¿QH�WKH�DGGLWLRQ�RI�LQWHJHUV�DV�FRUUHVSRQGLQJ�
to the combining of portfolios. That is, given integers 
M A | B  and N C | D , the sum of M and N would be 
GH¿QHG�DV
(1) M N A | B C | D (A C) | (B D)�  �  � � .
In a similar vein, the subtraction of integer N from M would 
correspond to the holder of portfolio M being relieved of both 
the assets and the liabilities in portfolio N. Using the symbol 
³í´�WR�UHSUHVHQW�VXEWUDFWLRQ��DQG�RQO\�VXEWUDFWLRQ���ZH�DUULYH�
at
(2) M N A | B C | D (A D) | (B C)�  �  � � .
Using this notation and applying the above rule, the equation 
3 5 2�  �  would correspond to

7 | 4 8 | 3 (7 3) | (4 8) 10 |12�  � �  .
At this point a subtle question arises. Having fallen into 

the habit of writing 9 | 6 7 | 4 , can we actually substitute 
one for the other? For example, is it also the case that 
9 | 6 8 | 3 7 | 4 8 | 3�  � ? Applying (2) to the question at hand, 
ZH�¿QG�WKDW

9 | 6 8 | 3 12 |14�   and 7 | 4 8 | 3 10 |12�  .
Since we also write 12 |14 10 |12 , it appears that we are 
free to substitute equivalent representations of integers in 
applying (1) and (2). Of course this assertion needs to be 
HVWDEOLVKHG�LQ�JHQHUDO�UDWKHU�WKDQ�LOOXVWUDWHG�LQ�VSHFL¿F�FDVHV�

Finally, it remains to deal with the concept of opposite. 
+DYLQJ�UHVHUYHG�WKH�V\PERO�³í´�WR�GHQRWH�VXEWUDFWLRQ��OHW�XV�
use � �iA | B  to denote the opposite (or additive inverse) of 
A | B ��'H¿QLQJ
(3) � �iA | B B | A ,
we have � �iA | B A | B C | C�  , where C A B �  and C | C  
FDQ�EH�LQWHUSUHWHG�DV�D�SRUWIROLR�RI�]HUR�YDOXH�

Armed with this new machinery, the original problem of 
evaluating ( 3 5)� � �  can be written

i(4 | 7 8 | 3) ?�  .
Applying rules (1)–(3), we obtain 

i i i(4 | 7 8 | 3) ((4 3) | (7 8)) (7 |15) 15 | 7 8 | 0�  � �    .
+HUH�WKHUH�LV�QR�DPELJXLW\�RI�VLJQ��7KH�V\PERO�³í´�KDV�EHHQ�
used only�WR�UHSUHVHQW�WKH�RSHUDWLRQ�RI�VXEWUDFWLRQ��DV�GH¿QHG�
by (2).

%HQH¿WV�RI�6WUXFWXUDO�,QWHJULW\

So what is the value of such an exercise? While we 
may not want to impose this machinery on children, it does 
SURYLGH� D� EDVLV� IRU� UHÀHFWLQJ� RQ� SHGDJRJLFDO� GHYLFHV� WKDW�
teachers might be encouraged to bring to bear. For example, 
the Common Core Standards ask that students 

Understand that positive and negative numbers are 
used together to describe quantities having opposite 
directions or values (e.g., temperature above/below 
]HUR��HOHYDWLRQ�DERYH�EHORZ�VHD�OHYHO��FUHGLWV�GHELWV��
positive/negative electric charge); use positive and 
negative numbers to represent quantities in real-
world contexts, explaining the meaning of 0 in each 
situation. (NGA & CCSSO, 2010, p. 43)
While temperature does provide a context in which 

negative numbers are commonly used, its properties are 
remote from the coherent structure described above. For in 
ZKDW�VHQVH�LV�í���&�WKH�RSSRVLWH�RI����&"�,V�í���³WZLFH�DV�
FROG´�DV�í��"�*LYHQ�WKH�H[LVWHQFH�RI�&HOVLXV��)DKUHQKHLW��DQG�
Kelvin scales, is temperature really a likely context in which 
WR�³H[SODLQ�WKH�PHDQLQJ�RI�]HUR´"

By contrast, credits/debits (assets and liabilities) do 
seem useful in developing a coherent understanding, at least 
for older children. For younger children, the idea of positive/
negative electric charge (Battista, 1983) can be developed in 
D�QRQ�HOHFWULFDO�FRQWH[W��RQH�LQ�ZKLFK�í��LV�H[SUHVVHG�DV

3 | 5  � � � � � � � � .
Here it is plausible to assert that appending or eliminating 

pairs of the form � �  does not change the overall charge, so 
that 3 | 5  is equivalent to 4 | 6 , is equivalent to 10 |12 , etc. 
Given this convention, it becomes possible to explain the 
subtraction of an integer N from M as “a take away problem” 
by choosing representations M A | B  and N C | D  in 
which A C!  and B D! . For example, one can arrive at the 
solutions of 3 5 ?�   as

> @ > @9 | 6 7 | 2�  � � � � � � � � � � � � � � � � � � � � � � � � �

> @ 2 | 4 � � � � � �  
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and of � �2 4� � as

> @ > @8 | 6 1| 5�  � � � � � � � � � � � � � � � � � � � � �

> @ 7 |1 � � � � � � � �  .
In this way, a familiarity with the mathematical structure 
underlying the integers enables us to provide teachers with 
classroom tools that are both effective and mathematically 
sound.

From Subtraction to Division

$QRWKHU�EHQH¿W�RI�SDXVLQJ�WR�GHYHORS�D�FRKHUHQW�DSSURDFK�
to negative numbers appears in the study of fractions. As 
was the case with “take away,” some whole number division 
problems do have a whole number as solution—e.g., 
12 3 4y  . However other problems, such as 14 3 ?y  , do 
not have a single whole number as solution,1 and it is this 
situation that leads us to introduce rational numbers, aka 

fractions. The solution of 14 3y  is routinely written 14
3

, a 

V\PERO�WKDW�FDQ�EH�YHUEDOL]HG�DV�³IRXUWHHQ�GLYLGHG�E\�WKUHH�´�
In other words, rational numbers are denoted by the division 
problems that give rise to them!

While our development of negative numbers called 
for highly unusual notation—i.e., replacing the corrupted 
VXEWUDFWLRQ� VLJQ� ³í´� E\� D� YHUWLFDO� EDU� ³_´�� LQ� WKH� FDVH� RI�
division we routinely ask students to do essentially the 
same thing. Even though the division sign “÷” has not been 
corrupted, our notation for fractions calls for replacing it by 
D�KRUL]RQWDO�EDU�³ʊ´�FDOOHG�D�YLQFXOXP��)XUWKHUPRUH��ZH�DVN�

children to accept assertions such as 14 28
3 6
 , even though 

the two expressions are clearly not the same.
Given these new kinds of numbers as solutions to whole 

number division problems, there arises a need to extend the 
operations    , , , � u y  in a credible way. Here the teacher 
faces the challenge of giving sense to the rules

A C AD BC
B D BD

r
r  ,     A C AC

B D BD
u  ,

A C AD
B D BC
y  ,     and     

1A B
B A

�
§ ·  ¨ ¸
© ¹

.

These are rules for which the Common Core Standards again 
HPSKDVL]H�D�QXPEHU�OLQH�LQWHUSUHWDWLRQ�

1 Of course 14 ÷ 3 = ? has the whole number solution Q = 4 and 
R = 2, which is sometimes written 4R2. In this sense, division is more 
elementary than subtraction. That is, we have no device for solving 
��í��� �"�LQ�D�ZKROH�QXPEHU�FRQWH[W�

Multiplication of Integers

Not addressed so far has been the multiplication of 
integers and a coherent way of arriving at M Nu  when 
M A B|  and N C D| . At a pre-algebra level it seems 
natural to begin with multiplication by a whole number 
K 0!  and the rule

K A B KA KB| |u  
which can be made plausible in terms of the amalgamation 
of K identical portfolios of the form A|B. An alternative is 
to defer such matters until algebraic tools can be brought to 
bear. Then, recalling that A | B  and C | D  were intended to 
represent the solutions of A B�  and C D� , respectively, it 
becomes natural to use

� � � � � �A B C D AC BD BC AD� u �  � � �

WR�GH¿QH
(4) A B C D AC BD| | | BC ADu  � � .
Given (4), we would arrive at 3 7 21� u  �  by writing

2 | 5 10 | 3 (20 15) | (6 50) 35 | 56 0 | 21u  � �   .
7KH�GH¿QLWLRQ�����DOVR�DOORZV�XV�WR�DUULYH�DW�SURSHUWLHV�VXFK�DV

� �1 K K� u  �

that link the integers to multiplication in rather sophisticated 
ways.

Finally, it is interesting to speculate on whether the 
relative complexity of the multiplication rule for integers

A B C D AC BD| | | BC ADu  � �

is related to the relative complexity of the addition rule
A C AD + BC +  = 
B D BD

for fractions. After all, our integers were created to deal with 
the inverse of addition while fractions were associated with 
the inverse of multiplication. In realms other than the one in 
which they were created, these numbers become like swans 
out of water, workable but rather awkward.
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