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For roughly the last five decades, our nation has had a
de facto national school mathematics curriculum, one that
has been defined—with perhaps a very small number of
exceptions in the last five years—by the standard school
mathematics textbooks. It is a fact, though not one that
has been explicitly discussed in the world of mathemat-
ics education, that the mathematics embedded in these
textbooks is extremely flawed, to the point of being un-
learnable (in the sense of unlearnable by a majority of stu-
dents). It is notable for its lack of definitions for concepts
(e.g., what is a fraction and what does it mean to multi-
ply two fractions?), lack of reasoning for skills (e.g., why
is negative times negative positive?), almost universal
lack of precision (e.g., is “30 = 1” a definition or a theo-
rem?), a general lack of coherence (e.g., are finite deci-
mals and fractions different kinds of numbers?), and a
pervasive lack of mathematical purpose in its presenta-
tion (e.g., telling students to learn to take the absolute
value of a number by killing the negative sign because
this skill will be on the test). For ease of exposition, we call
this particular version of school mathematics TSM (Text-
book School Mathematics). We will refer to pp. 22-30 (of
the pagination of the PDF) of Wu, 2020d for a more de-
tailed discussion of TSM. In retrospect, much of the tur-
moil in school mathematics education during the last

thirty years has revolved around disagreements on how
best to deal with the absurd situations that arise in our
school mathematics classrooms when teachers try to
teach something as nonsensical as TSM (Wu, 2020d). For
all these reasons and more, it is no longer possible in
2020 to discuss mathematics learning in schools without
directly confronting TSM. The central issue now is how
to eradicate TSM and help teachers and students,
schools, and districts transition to a different version of
K-12 mathematics that is transparent, and therefore
learnable. 

There is no better illustration of the fiasco that is TSM
than the multiple defects in how the concept of division
is taught in elementary school. The ubiquity of the lim-
erick, “Ours is not to reason why, just invert and multi-
ply,” points to the catastrophic failure in the teaching of
the division of fractions, but less well-known is the fact
that a failure of comparable magnitude has already oc-
curred in the teaching of division among the whole num-
bers. On the one hand, there is the concept of the division
of one whole number by another, such as 35 ÷ 7 or 36 ÷ 6,
and on the other, there is the concept of the division-with-
remainder of one whole number by another, e.g., the division-
with remainder of 35 by 6 for which the symbol 35 ÷ 6
cannot be used. These are two different concepts but
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TSM makes believe that they can be conflated. In addi-
tion, TSM does not make explicit the fact that the long
division algorithm, e.g., of 35 by 6, is a shortcut that
yields the division-with-remainder of 35 by 6. These
flaws of TSM destroy the bridge that leads from the long
division algorithm to at least two topics in middle and
high school: the conversion of a fraction to a decimal by
“the long division of the numerator by the denominator”
(in a sense to be made precise later) and the division al-
gorithms for polynomials. This is but one example of
how TSM suppresses the coherence of school mathematics
and, instead, presents mathematics to students as a col-
lection of fragmented pieces of factoids to be memorized
by brute force. 

The mishandling of the long division algorithm by
TSM in elementary school and the ripple effects of this
particular failure in the school mathematics curriculum
are the main concerns of this article. It will also offer
some suggestions on how to improve the teaching of this
algorithm in grades 4-6. In the last section, we put this
discussion of the long division algorithm in the broader
context of how TSM has made school mathematics a hor-
ror story. We will also describe a recent development—
the publication of a detailed curricular road map for
making K-12 mathematics mathematical—that may
eventually render TSM a relic of the past.

Teaching Long Division in Grade 4

Consider teaching the long division 78 by 4 in grade 4.
The usual setup for long division is to draw a “division
house” (in the terminology of Green, 2014), putting 78
inside and 4 outside.

(1)

Students are told that the number 19 on the roof and the 2
at the bottom are the answer to the following question: if
they want to put 78 apples in groups of 4, how many such
groups are there, and how many apples (if any) are left
over? They are also taught to write this as 78 ÷ 4 = 19 R2. 

Fourth graders undoubtedly have a hard time under-
standing why the “division house” in (1) gives the cor-
rect answer of 19 equal groups of 4 with remainder 2.
The effect of the putative “equality” 78 ÷ 4 = 19 R2 on
their mathematics learning is, however, more insidious
and more lasting. First of all, mathematics education cer-

tainly should not engage in teaching something that is
blatantly false, but 78 ÷ 4 = 19 R2 is blatantly false. To see
this, if we divide 59 by 3, we also get 19 with the remain-
der 2. So we have 59 ÷ 3 = 19 R2. It follows that 59 ÷ 3 and
78 ÷ 4 (whatever they are!) must be equal since they are
both equal to 19 R2. Even fourth graders can sense that,
whatever “equality” means, the equality 59 ÷ 3 = 78 ÷ 4
looks really bad. To understand why, we must put our-
selves in the context of fractions to see that this implies

= , which implies 19 = 19 , which in turn implies2
4

2
3

78
4

59
3

= . The last equality is clearly false.2
4

2
3

Let us look at 78 ÷ 4 = 19 R2 from a different angle. It
would appear that TSM uses it as a shorthand for “do
the long division of 78 by 4 and the answer is 19 with re-
mainder 2.” It turns out that this kind of illegitimate
shorthand is part of a common pattern in TSM. Consider
the teaching of fractions in TSM, for example. The equal
sign in any of the formulas for arithmetic operation is al-
ways used as a call to do a computation or announce the
result of a computation (in the following, a, b, etc., are
whole numbers which may be assumed to be nonzero
where necessary):

None of these formulas are intended by TSM to con-
vey the message that the quantities on the two sides are
“equal.” Indeed, a correct mathematical exposition would
first define what it means to add, subtract, multiply, and
divide two fractions before proving that the fractions on
both sides of each of (2) – (4) are the same fraction, i.e.,
the same point on the number line. (See Wu, 2011, Sec-
tions 14.1, 16.1, 17.1, and 18.2.) However, TSM, as a rule,
does not provide definitions for concepts—it may provide
pictures and metaphors, but not mathematical defini-
tions—so that students are left in the dark about what a
fraction is and, therefore, also what it means to add, sub-
tract, multiply, and divide two fractions. In TSM, each
of these four equations, like 78 ÷ 4 = 19 R2, is nothing
more than a command to perform a computation, e.g.,
(4) says to divide by , simply invert and multiply by

. In TSM, it is irrelevant what “division” means; all that
matters is that students get the right answer when called
upon to do a division.
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To further reinforce our claim that TSM consistently
misinforms students about the equal sign, let us look at
what TSM says about equations and how to solve them.
According to TSM, an equation in one variable is an
equality of two expressions involving a “variable” x,
such as 3x + 1 = x – 5. The instruction from TSM on how
to solve such an equation is to go through the following
steps of symbolic manipulations: 

Step A: (–x) + 3x + 1 = (–x) + x – 5.

Step B: 2x + 1 = –5.

Step C: 2x + 1 + (–1) = –5 + (–1)

Step D: 2x = –63

Step E: x = –3

The answer of −3 is indeed correct, but what do steps
A–D mean? Take Step A, for example. TSM says it follows
from the equality 3x + 1 = x – 5 by adding the same ex-
pression (–x) to both sides. But in what sense is 3x + 1 =
x – 5 an equality? Since x is a variable, it can take on ar-
bitrary values such as x = 1. In that case, the left side is 4
and the right side is –4, and they are certainly not equal!
The same comment applies to Steps B, C, and D. The use
of the equal sign in this standard process of solving the
linear equation is therefore a mathematical travesty. So,
once again, what TSM wants is not for students to learn
how to use the equal sign correctly but only to know that
they should go on automatic pilot to do computations at
the sight of the equal sign (For a correct definition of
what an equation is and how to correctly solve the equa-
tion 3x + 1 = x − 5 via Steps A–D, see Sections 2.1 and 3.1
of Wu, 2016b.). Wu (2016b) shows how to solve the equa-
tion 3x + 1 = x − 5 correctly via steps A-D in Sections 2.1
and 3.1.

Thus, there should be no mystery about why students
fail to understand the meaning of the equal sign: TSM
has systematically corrupted their conception from the outset.
Garbage in, garbage out. This failure has drawn the atten-
tion of educators in the past four decades because it has
hampered students’ ability to learn algebra in middle
school (e.g., Falkner et al., 1999, Kieran, 1981, & Knuth
et al., 2008). However, the connection between TSM and
students’ failures in mathematics, particularly algebra,
seems to have been overlooked thus far. As mentioned
above, one cannot look past TSM in the year 2020 in any
attempt to improve student learning, so we hope educa-
tion research will, at last, recognize the need to eradicate
TSM from school mathematics education. 

Let us now revisit (1). A key point is how to introduce

the division symbol “÷” correctly to students in the con-
text of whole numbers. We define 35 ÷ 5 to be the whole
number k so that 35 = k × 5 ( in the same way that we in-
troduce the subtraction 17 – 9 to be the whole number 𝑚
so that 9 + 𝑚 = 17). Then it is clear that the equation 35 ÷
5 = 7 is correct since 35 = 7 × 5. In general, if we know
ahead of time that m is a multiple of n (n ≠ 0), then m ÷ n
is by definition the whole number k so that m = k × n. If,
however, m is not multiple of n, we are at a loss as to
what m ÷ n could mean as a whole number or two whole
numbers. There is, therefore, no way that something like
78 ÷ 4 = 19 R2 could make any sense as an equality about
whole numbers—unless you insist, as TSM does, that the
computation with the “division house” must have an answer
and “78 ÷ 4 = 19 R2” is the symbolic expression of choice.
School mathematics must reject such bizarre impulses
and teach students to rigorously observe that—in the con-
text of whole numbers—the division symbol m ÷ n (n ≠ 0)
can be used only when m is known to be a multiple of n.
This kind of precision is by no means inappropriate for
fourth graders. After all, even second graders learn not
to write 5 – 9, or in general k – l, when k < l in the context
of whole numbers. 

If we do not know whether or not m is a multiple of n,
then we have to introduce the concept of division-with-
remainder. Here is the definition of the division-with
remainder of m by n (n ≠ 0): it is an expression of m in
terms of n and two whole numbers q and r so that

m = (q × n) + r where 0 ≤ r < n                          (5)

The number q is called the quotient of the division-with-
remainder and r its remainder (both the quotient and the
remainder are unique, cf. Wu, 2011, pp. 104-105). If the
remainder r in the division-with-remainder is 0, then m
is a multiple of n and the two concepts of division of m by
n and division-with-remainder of m by n coincide. We note
that the restriction of 0 ≤ r < n on the remainder r is an
essential part of the definition because it guarantees that
the whole number q is the largest whole number so that
q × n ≤ m, as we now explain. 

In fourth grade, of course, we define division-with-
remainder only by using explicit examples. For the case
at hand: the division-with-remainder of 78 by 4 is 
expressed as

78 = (19 × 4) + 2   where “2” satisfies 0 ≤ 2 < 4        (6)

This equation implies that if there are 78 apples (i.e., the
left side of (6)), then it is the same number of apples as
in 19 groups of 4 apples (i.e., (19 × 4)) plus 2 extra apples
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on the side (i.e., the +2 on the right side of (6)). This is the
intuitive meaning of “division-with-remainder of 78 by 4”
that we want to convey to students. If we can teach students
how the “division house” in (1) leads directly to (6), then
the “division house” will become learnable mathematics
rather than just a senseless ritual.

Naturally, there are other expressions for 78 that 
superficially resemble (6). For example, 

78 = (18 × 4) + 6

But this is not the division-with-remainder of 78 by 4 be-
cause the “remainder” here, 6, does not satisfy the re-
quirement of being less than < 4 as stipulated in (6). So,
we take out another “group of 4 apples” among the 6
leftover so that the 18 equal groups of 4 become 19 equal
groups, and there are now 2 leftover as in (6). On the
other hand, we cannot get 20 equal groups of 4 out of 78
because 20 × 4 = 80, which is greater than 78. Therefore
the 19 in (6) is the largest whole number so that (19 × 4)
≤ 78. We usually express this by saying that 19 is the
largest multiple of 4 that is ≤ 78.

By tradition, we continue to call m the dividend and
n the divisor in (5). Thus, 78 is the dividend, 4 is the di-
visor, 19 is the quotient, and 2 is the remainder in the di-
vision-with-remainder (6). 

Knowing that the quotient is just the largest multiple
of the divisor not exceeding the dividend tells us that no
thinking is needed to get the division-with-remainder of
one number by another. For example, to find the divi-
sion-with-remainder of 78 by 4, we could simply write
out the multiples of 4 until we get close to 78: 

0, 4, 8, 12,...,68, 72, 76, 80,....

By inspection, 76 is that multiple. So, since 76 = 19 × 4
and 78 – 76 = 2, we see that the division-with-remainder
of 78 by 4 is given by (6), i.e., 

78 = (19 × 4) + 2  

While this way of getting the quotient and remainder
may be straightforward, it can get very tiresome very
fast: think about getting the division-with-remainder of
78765 by 4 by listing all the multiples of 4 up to and just
beyond 78765. We need a shortcut, and the “division
house,” i.e., the long division algorithm in (1) is that short -
cut, as we now show. After all, (1) is a bit more pleasant
than listing the multiples of 4 up to 80. 

The main purpose of this article is to tell the full story
about why the long division algorithm in (1) leads inex-
orably to (6), but grade four may not be the right place

to do this. Nevertheless, if we believe in teaching stu-
dents mathematics rather than just procedures, we have
to find ways of offering some grade-appropriate reason-
ing to make sense of (1) to fourth graders (in the lan-
guage of Wu (2006), we are performing mathematical
engineering to make (1) consumable by fourth graders).
Section 7.4 of Wu (2011) makes two such well-known
suggestions, and we will recap one of them here. For this
purpose, having a correct definition of division-with-re-
mainder as in (5) becomes an indispensable asset. First,
let us rewrite (1) by putting in the zero that was inten-
tionally omitted for simplicity: 

(7)

This rewrite makes it obvious that the subtraction 
78 – 40 = 38 is actually an intermediate step in the long
division (the omission of 0’s in (7) is of course a common
practice in the standard algorithms). We are now going
to make some sense of (7), as follows. By the definition
of the division-with-remainder of 78 by 4, we want a
whole number q and a whole number r so that

78 = (q × 4) + r where 0 ≤ r < 4   (8)

We are going to estimate what q must be. It cannot be
a 3-digit number because the smallest 3-digit number is
100, and if q has 3-digits, then the right side of (8) ≥ 400,
which would contradict (8). Next, we try letting 𝑞 be a 
2-digit number. If q ≥ 20, then the right side of (8) would
be ≥ 80, again impossible. So q < 20. Therefore, let q = 
10 + 𝑏 where 𝑏 is a single-digit number. Then q × 4 = 40 +
4𝑏. By (8), we have 78 = 40 + 4𝑏 + 𝑟, which gives

(78 – 40) = 4𝑏 + 𝑟 (9)

This explains the appearance of 78 – 40 = 38 in (7). Next,
we estimate what b should be. According to (9), r = 38 –
4b, and since 0 ≤ r < 4 by (8), we have 0 ≤ 38 – 4b < 4. At
this point, a knowledge of the multiplication table im-
mediately gives b = 9, so that q = 10 + b = 19. Thus, (9)
gives 38 = 36 + r, or 

38 – 36 = r

On the one hand, this explains the appearance of 38 – 36
= 2 in (7). On the other hand, we get r = 2. Referring back
to (8), we have arrived at 

1 9..
4 ) 7 8.. 

4 ..
3 8..
3 6..

2..
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78 = (19 × 4) + 2

and this is exactly (6). We have finally made some math-
ematical sense of the “division house” in (7) or (1) as well
as its kinship to (6). In a fourth grade or fifth grade class-
room, one should use the same strategy to do a few more
specific examples, e.g., why the long division of 138 by
5 leads to 138 = (27 × 5) + 3, or why the long division of
781 by 4 leads to 781 = (195 × 4) + 1. The latter example
will be particularly illuminating to students because they
get to see that the long division of 78 by 4 in (1) is com-
pletely embedded in the long division of 781 by 4.

(10)

Teaching Long Division in Grade 6

The teaching of the long division algorithm usually spans
grades 4-6. We now describe what students should learn
about the algorithm by the end of the sixth grade: they
should know why the long division of a two-digit number
by a single-digit number—such as 78 by 4—leads directly
to a division-with-remainder such as 78 = (19 × 4) + 2

First of all, what is an algorithm? This word is used 
frequently in elementary school, yet it is hardly ever ex-
plained and even more rarely taken seriously in teach-
ing. If the teaching of the standard algorithms would
include an explicit description in each case of what the
algorithm in question is (e.g., Wu, 2011, pp. 63, 74, 86-87,
108-109), then the mathematical quality of the teaching
would most likely improve, as we will try to demon-
strate with the long division algorithm. For school math-
ematics, we may define an algorithm to be a finite
sequence of precise instructions for carrying out specific
computations to result in the desired outcome at the end.
To describe the long division algorithm, we should write
down abstractly a finite sequence of steps so that, for any
pair of whole numbers m and n (n ≠ 0) , these steps will
lead to the division-with-remainder of m by n in the form
of (5). Something approximating this can be found in Wu
(2011), Section 7.3. In a sixth-grade classroom, however,
such an approach would be impractical. Instead, we will
explicitly describe such a finite sequence of instructions

for specific cases. For example, here is the long division
algorithm of 78 by 4. An overall comment is that each
step in this sequence is a division-with-remainder whose
divisor is always 4 and whose dividend will involve one
digit of the dividend 78 at a time.

Step 1. Perform the division-with-remainder so
that its dividend is the leftmost digit 7 of 78. (Recall:
its divisor is always 4.) 

7 = (1 × 4) + 3                      (11)

Step 2. Perform the division-with-remainder so
that its dividend is the sum of the next digit of 78
(which is 8) and 10 times the remainder of the 
preceding division-with-remainder (which is 3).
(Recall: the divisor is always 4.) 

38 = (9 × 4) + 2                      (12)

Step 3. The quotient of the division-with-remain-
der of 78 by 4 is obtained by “stringing together”
the single-digit quotients in Steps 1 to 2, namely, 
1 and 9. The remainder of the division-with-re-
mainder of 78 by 4 is the remainder of the last step
(Step 2), which is 2. 

One must convince sixth graders that, strange as
Steps 1-3 may seem, the long division in (1), upon closer
inspection, is nothing more than a schematic represen-
tation of Steps 1 and 2. What we want to show is that the
long division algorithm is correct, i.e., we have to prove the
following theorem.

Theorem 1. Steps 1 and 2 imply Step 3.

One may think that Theorem 1 is a waste of time because
to show Step 3 is correct, all we have to do is check that
78 = (19 × 4) + 2 is correct. But the theorem says much
more: it says that Step 3 can be derived strictly from Steps
1 and 2. Thus it is more than a numerical statement that
(19 × 4) + 2 is equal to 78. Rather, it asserts that we can use
reasoning alone to get to the equality 78 = (19 × 4) + 2 by
making use of Steps 1 and 2.  

Proof of Theorem 1. As in the proofs of the validity of
all the standard algorithms, the key ingredient is the ex-
panded form of a whole number (see Wu 2011, p. 20): 

78 = 70 + 8                      (13)

1 9 5..
4 ) 7 8 1.. 

4.........
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1..
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Now, from (11), we get 7 = (1 × 4) + 3. Therefore, 

70 = (10 × 4) + 30

Substituting this value of 70 into (13), we get 
78 = (10 × 4) + 30 + 8, which is equal to 

78 = (10 × 4) + 38

(Observe that this corresponds to the subtraction 78 – 40
= 38 in the “division house” (1).) Substituting the value
of 38 in (12) into the right side of the preceding equation,
we obtain 

78 = (10 × 4) + (9 × 4) + 2 

Applying the distributive law to the first two terms on
the right side, we get 78 = (19 × 4) + 2. This shows that
the division-with-remainder of 78 by 4 has quotient 19
and remainder 2, exactly as claimed by Step 3. Theorem
1 has been proved. 

The first question we must ask is how this theorem
and its proof are superior to the above informal argu-
ment presented in connection with equations (8) and (9).
The answer is that insofar as the long division algorithm
is an algorithm, we are duty bound to give an explicit de-
scription of every step of the algorithm, and this the ear-
lier informal argument failed to do. Precision and clarity
matter in mathematics. Moreover, mathematics is about
the deduction of conclusions from assumptions, and the
preceding theorem and its proof present a textbook case
of this deduction process. By comparison, one is left un-
certain about the precise assumptions that were made in
the earlier argument. Also, see the comment following
the third remark on this page. 

The preceding proof should also be supplemented by
three additional remarks. First, the long division algo-
rithm exemplifies the recurrent theme of the standard
algorithms, which is to break up a multi-digit computation
into computations involving single digits (e.g., Wu, 2011,
Chapter 3). Thus, each of Steps 1 and 2 essentially
(though not literally) computes with the digits of the div-
idend 78 one at a time, and more importantly, the algo-
rithm itself computes the quotient 19 one digit at a time
(see Step 3). It may also be observed that although each
of Steps 1 and 2 is itself a division-with-remainder, it dif-
fers from the original division-with-remainder of 78 by
4 in that the dividend in each of Step 1 and Step 2 (7 and
38, respectively) is smaller than the original dividend of

78. While this fact may not seem to be much of an ad-
vantage when the original dividend (such as 78) is rela-
tively small, the advantage will become more
pronounced as the dividend gets larger. Our next exam-
ple of the long division of 781 by 4 will give a better idea
in this regard.

A second remark is that, to the extent that there should
be one general long division algorithm that is applicable
in all cases, one may not be able to discern from the pre-
ceding Steps 1-3 what the general long division algo-
rithm should look like. However, this lack of clarity will
disappear in our next two examples with a dividend of
three digits. For a more precise description of the general
case, see Chapter 7 of Wu (2011). 

A third remark is that one should take note of the fact
that the algorithm, as stated in Steps 1-3, completely ig-
nores the place value of the digits of the dividend. This
fact will be more forcefully brought out after we discuss
the division-with-remainder of 781 by 4. Contrary to the
emphasis placed by the education literature on the con-
cept of place value in discussing the standard algo-
rithms, a main selling point of the standard algorithms
is the mathematical simplicity of their execution because
these algorithms intentionally ignore place value (e.g.,
Wu, 2011, pp. 59, 66, 120-121). Place value becomes rele-
vant only when we try to prove that an algorithm is cor-
rect. From this perspective, the argument in connection
with equations (8) and (9) is unsatisfactory because it
does not draw a sharp line between the place-value in-
dependence of the algorithm itself and the key role place
value plays in the justification of the algorithm. 

We should also mention that there is a subtle issue in-
volving the implicit assumption in Steps 1 and 2 that the
quotient in each division-with-remainder of (11) and (12)
will be a single-digit number. We refer the reader to Sec-
tion 7.6 of Wu (2011) for the simple explanation.

As promised, we will next take up the division-with-
remainder of 781 by 4. In a typical sixth grade classroom,
this example would be optional, though highly desir-
able. 

Recall first of all that no thinking is needed for getting
the division-with-remainder of 781 by 4: count all the
multiples of 4 up to 781. However, this is clearly a te-
dious process and a shortcut is called for (the tedium
would be even more obvious if the dividend is not 781
but 781234). As we mentioned earlier, the long division
algorithm is the sought-for shortcut. Let us first recall
the long division in (10):

6 | HUNG-HSI WU



(14)

It is easy to verify that this “division house” is merely a
schematic representation of Steps 1-3 of the following
long division algorithm of 781 by 4: 

Step 1. Perform the division-with-remainder so
that its dividend is the leftmost digit 7 of 781. (Recall:
its divisor is always 4.) 

7 = (1 × 4) + 3                      (15)

Step 2. Perform the division-with-remainder so
that its dividend is the sum of the next digit of 
781 (which is 8) and 10 times the remainder of the 
preceding division-with-remainder (which is 3). 
(Recall: the divisor is always 4.) 

38 = (9 × 4) + 2                      (16)

Step 3. Perform the division-with-remainder so
that its dividend is the sum of the next digit of 
781 (which is 1) and 10 times the remainder of the
preceding division-with-remainder (which is 2). 
(Recall: the divisor is always 4.) 

21 = (5 × 4) + 1                      (17)

Step 4. The quotient of the division-with-remain-
der of 781 by 4 is obtained by “stringing together”
the single-digit quotients in Steps 1-3, namely, 1,
9, and 5. The remainder of the division-with-re-
mainder of 781 by 4 is the remainder of the last
step (Step 3), which is 1. 

What we want to prove is that the long division algo-
rithm of 781 by 4 is correct, i.e., we have the following
theorem.

Theorem 2. The preceding Steps 1-3 imply Step 4. 

Proof of Theorem 2. Having gone through the proof of
Theorem 1 in detail, we will be briefer this time around.
As always, we begin with the expanded form of 781: 

781 = 700 + 80 + 1                       (18)

From (15), we get 

700 = (100 × 4) + 300

Substituting this value of 700 into (18), we have 
781 = (100 × 4) + 300 + 80 + 1, or 

781 = (100 × 4) + 380 + 1                      (19)

Now (16) implies that 380 = (90 × 4) + 20. If we substitute
this value of 380 into (19), we obtain

781 = (100 × 4) + (90 × 4) + 20 + 1

Applying the distributive law to the first two terms on
the right side, we get 

781 = (190 × 4) + 21

Now substituting the value of 21 in (17) into the right
side, we obtain 

781 = (190 × 4) + (5 × 4) + 1

Using the distributive law again on the right side, we 
finally arrive at 

781 = (195 × 4) + 1                       (20)

Since this is exactly the statement of Step 4 above, i.e.,
the division-with-remainder of 781 by 4 has quotient 195
and remainder 1, the proof of the theorem is complete.

Remarks
1.  Now, it should be clear from the repetitive nature of

the preceding Steps 2 and 3 how the long division al-
gorithm will proceed in the general case: Begin with
the leftmost digit of the dividend as in Step 1 above
and repeat the following process until you get to the
rightmost digit of the dividend: 

For the dividend of the next division-with-
remainder, add 10 times the remainder of the
preceding division-with-remainder to the next
digit to the right in the original dividend.

     Moreover, it is equally clear how to prove that the
algorithm is correct: start with the expanded form of
the original dividend and replace each term in the ex-
panded form by each of the divisions-with-remainder
given by the steps of the algorithm. 

1 9 5..
4 ) 7 8 1.. 

4.........
3 8......
3 6......

2 1..
2 0..

1..
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2.  Looking back over our work so far, we can see more
clearly the purpose of the long division algorithm: it
is to replace the original division-with-remainder by
a succession of simpler divisions-with-remainder in
each of which the dividend is smaller than the origi-
nal one. Thus, in the case of the division-with-remain-
der of 781 by 4, the dividends in (15)-(17) are 7, 38,
and 21; each is far smaller than 781.

3.  We are also in a better position now to understand the
statement that the long division algorithm ignores
place value. Let us compare the two long divisions: 78
by 4 and 781 by 4. The number 7 is the tens digit in 78
but is the hundreds digit in 781, yet the first steps of
the algorithm in the two cases, (11) and (15), are iden-
tical. Similarly, the number 8 is the ones digit in 78
but is the tens digit in 781, and yet the second steps
of the algorithm in the two cases, (12) and (16), are
again identical. These confirm a key fact about the
long division algorithm: it only looks at each digit of
the dividend but not its place value. (Let it be said one
more time that the proof of the validity of the algo-
rithm does take into account the place value of each
digit of the dividend.)

To consolidate our gains, we will take up the divi-
sion-with-remainder of 242 by 16 (this is the division-
with-remainder suggested in Green, 2014). Again, in a
typical sixth grade classroom, this would be optional,
though extremely instructive. The new feature here is
that the divisor is a two-digit number. In this case, the
long division algorithm of 242 by 16 is the following: 

Step 1. Perform the division-with-remainder so
that its dividend is the leftmost digit 2 of 242 
(recall: its divisor is always 16): 

2 = (0 × 16) + 2                       (21)

Step 2. Perform the division-with-remainder so
that its dividend is the sum of the next digit of 242
(which is 4) and 10 times the remainder of the 
preceding division-with-remainder (which is 2).
(Recall: the divisor is always 16.) 

24 = (1 × 16) + 8                        (22)

Step 3. Perform the division-with-remainder so
that its dividend is the sum of the next digit of 242
(which is 2) and 10 times the remainder of the 
preceding division-with-remainder (which is 8).

(Recall: the divisor is always 16.) 

82 = (5 × 16) + 2                        (23)

Step 4. The quotient of the division-with-remain-
der of 242 by 16 is obtained by “stringing together”
the single-digit quotients in Steps 1-3, namely, 0,
1, and 5. The remainder of the division-with-re-
mainder of 242 by 16 is the remainder of the last
step (Step 3), which is 2. 

Here is the “division house” of the long division of 242
by 16:

(24)

It is easy to see that this “division house” is nothing but
a schematic presentation of the preceding Steps 1-3. Let
us prove once again that the algorithm is correct. 

Theorem 3. In the long division algorithm of 242 by 16, Steps
1-3 imply Step 4. 

Proof. The expanded form of 242 reads: 

242 = 200 + 40 + 2 = 240 + 2                       (25)

Since the equality (21) is the trivial statement that 2 = 2,
we begin with (22), which implies that 240 = (10 × 16) +
80. Substituting this value of 240 into (25), we get 

242 = (10 × 16) + 80 + 2 = (10 × 16) + 82

Now substituting the value of 82 in (23) into the preced-
ing equation, we obtain 

242 = (10 × 16) + (5 × 16) + 2

Applying the distributive law to the first two terms on
the right side, we get 

242 = (15 × 16) + 2

which is exactly the statement that the division-with-re-
mainder of 242 by 16 has quotient 15 and remainder 2,
i.e., Step 4 is correct. The theorem is proved.

0 1 5..
1 6 ) 2 4 2.. 

0.. .......
2 4......
1 6......

8 2..
8 0..

2..
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Again, the repetitive nature of Steps 2 and 3 helps to
give a clear conception of what the general long division
algorithm is about. This long division algorithm of 242 by
16 also serves to better highlight a special feature of the
long division algorithm in general, which is to break up
the original division-with-remainder of 242 by 16 into
more manageable divisions-with-remainder, each with
the same divisor 16, but with a far smaller dividend: the
division-with-remainder of 24 by 16, and the division-
with-remainder of 82 by 16. One more thing that is note-
worthy is that TSM teaches the long division of 242 by
16 by saying that, since 16 does not go into 2, one should
consider the first two digits 24 of 242 as the first divi-
dend. However, the long division algorithm of 242 by
16—being an algorithm—does not depend on this con-
tingent kind of judgment to “skip a step” in certain situ-
ations. Its instruction to perform a division-with-
remainder in Step 1 is meant to be carried out literally,
as it was in the equality (21).

Curricular Implications 

Because of the lack of space, we will be brief in explain-
ing how TSM’s mangling of the concept of division-
with-remainder has pernicious repercussions later in the
school mathematics curriculum. 

The concept of the GCD [greatest common divisor;
commonly referred to as greatest common factor (GCF)
in school mathematics] of two nonzero whole numbers
is a staple of elementary school mathematics, but TSM’s
failure to correctly teach division-with-remainder has
forced the teaching of gcd to be confined entirely to an
inspection of the factors of each number. In particular,
this failure results in the Euclidean algorithm not being
taught in K-12 as an effective method of getting the gcd.
While we are not strongly advocating here that the Eu-
clidean algorithm be taught in K-12, we can nevertheless
amplify the fact that, by not teaching division-with-re-
mainder properly, TSM hampers students’ future math-
ematics learning. Consider, for example, a favorite
activity in the learning of fractions: how to simplify the
following fraction to lowest terms: 

551
247

It is not so easy to factor either 551 or 247, but if we do
the long division of 551 by 247, we get

551 = (2 × 247) + 57

It is a fairly straightforward consequence of this equal-
ity that the two pairs {551,247} and {247,57} have exactly
the same collection of common divisors (e.g., Wu, 2011,
p. 465; Wu, 2016a, p. 210). But the second pair has the
advantage that 57 is considerably smaller than 247 or
551, and therefore, the search for the gcd of {247,57}
promises to be potentially easier than that of {551,247}.
As a matter of fact, it is so easy to get all the factors of 57
(they are 1, 3, 19, and 57 because 57 = 3 × 19) that we know
the common divisors of {247,57} are among 1, 3, 19, and
57. It is then painless to conclude that the gcd of {247,57}
is in fact 19, so that 19 is also the gcd of 551 and 247.
Hence,

The idea that the task of finding the gcd of two whole
numbers can be simplified by just one application of
long division—without a doubt—deserves to be taught,
but it cannot be taught if all that TSM has to offer about
long division is of the “551 ÷ 247 = 2 R57” variety.

Needless to say, the Euclidean algorithm is just an it-
eration of the preceding process (e.g., Wu, 2011, pp.
464ff.; Wu, 2016a, pp. 203ff). 

Of course, the numbers in the preceding problem
have been rigged to heighten the drama (!), but the mes-
sage should not be lost, to the effect that the long divi-
sion algorithm is not just a boring arithmetic skill but is
a very versatile mathematical tool (e.g., Wu, 2011, Part
4). More importantly, such an application of the long di-
vision algorithm is a powerful illustration of the coher-
ence of mathematics: the fact that there are hidden
connections between seemingly disparate topics, e.g.,
long division and simplifying fractions. TSM routinely
makes it impossible for students to see this and other
hidden connections. 

The issue of the coherence of mathematics naturally
brings us to two other topics in the school curriculum re-
lated to long division. First, the division algorithm for
polynomials of one variable states that given two such
polynomials F(x) and G(x) (with G ≠ 0), F can be ex-
pressed in terms of 𝐺 and two polynomials Q(x) and R(x)
as follows:

F(x) = Q(x)G(x) + R(x) where deg R(x) < deg G(x)

(see, e.g., Section 5.1 of Wu, 2020b). This is clearly an
analogy of division-with-remainder, with Q and R play-
ing the roles of quotient and remainder, respectively,
and F and G playing the roles of dividend and divisor,
respectively. This is not quite a direct generalization

= =551
247

19 × 29
19 × 13

29
13
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from whole numbers to polynomials. The difference is
that, for the division-with-remainder, the comparison of
the remainder to the divisor is by using the magnitudes
of the whole numbers, but the comparison in the case of
the division algorithm for polynomials is by using the de-
grees of the polynomials. Thus, polynomial division is
reminiscent of long division but not a generalization of it.
In advanced mathematics, both will become special cases
of Euclidean domains—again, a reminder of the coherence
of mathematics. But since TSM does not teach division-
with-remainder, there can be no such intellectual reso-
nance when students come to the division algorithm for
polynomials in Algebra II. This is an opportunity wasted. 

Our next topic is about the conversion of a fraction to
a decimal “by the long division of the numerator by the
denominator.” This is such a well-known topic in middle
school mathematics that it suffices to use a simple exam-
ple to illustrate the fundamental ideas involved. We
claim:

where 4375 is the quotient of the long division of 7 × 104

by 16. Here, the validity of the equality of the two num-
bers in (26) is not in question because, by the definition
of a decimal (e.g., Wu, 2011, p. 187),

and the fraction on the right easily simplifies to     . What
is at issue, rather, is why the fraction    is equal to the
quotient resulting from the long division of 7 × 104 by 16,
but with the decimal point inserted in front. (Just as in
Theorem 1, we have again an example of the emphasis
placed on the method of arriving at a conclusion rather
than on the validity of the conclusion itself.) This issue—
that the fraction is equal to the decimal produced by the
long division—is precisely what is not addressed in the
usual educational discussions, which are usually preoc-
cupied with the “repeating” property of the resulting
decimal. Therefore, what we seek is not just a proof of
(26) per se, but an explanation for the intrusion of long
division into this conversion procedure and how the
decimal point materializes. To this end, we will prove
something more general: let the long division of 7 × 10k

(k being any nonzero whole number) by 16 have quo-
tient N and remainder r, then

(27)

First, we show that (27) implies (26). Let k = 4 in (27).
Since 7 × 104 = 4375 × 16, we see that N = 4375 and r = 0
in this case. Therefore (26) immediately follows. Next, to
prove (27), we have by the definition of N and r that 

7 × 10k = (N × 16) + r

Therefore, 

The proof of (27) is complete. We also pause to note that
included in (27) is the assertion that if we let k = 5 or any
whole number > 4, (27) will still imply (26).
      It is not out of place to remark that the simplicity of

the preceding reasoning comes from the clear under-
standing of how long division leads to division-with-re-
mainder as in Theorems 1-3. We should also point out
that (27)—together with its proof above—remains valid,
verbatim,when the fraction is replaced by any fraction.
This is the key step that leads to the general proof of the
fact that the conversion of a fraction to a decimal can be
achieved “by the long division of the numerator by the
denominator.” For the details, see Section 3.4 of Wu
(2020c). (A simplified version without the use of limits
has been given in Chapter 42 of Wu, 2011.) 

The conversion of a fraction to a decimal by long di-
vision is a staple of school mathematics, and we take for
granted that someone must have written down a proof
of the correctness of this procedure. Yet, it seems almost
impossible to locate a correct proof in the recent educa-
tion literature. So long as TSM rules over school mathe-
matics and so long as it preaches that 16 ÷ 7 = 2 R2, there
can be no hope for such a proof. Once again, the surpris-
ing connection between long division and the conversion
of a fraction to a decimal is lost because TSM has ren-
dered mathematical reasoning impossible.

Must We Eradicate TSM? 

In her popular article, Elizabeth Green (2014) makes a
passing comment on the traditional way of teaching the
“division house” as nothing more than a ritualistic incul-
cation of mind-numbing procedures that turns “school
math into a sort of arbitrary process wholly divorced
from the real world of numbers.” Green’s article sug-
gests that the road to improvement is to change the teach-
ing of school mathematics by tapping “into what
students already understood and then [building] on it.

= 0.4375                        (26)7
16

0.4375 = 
4375

10,000

7
16

7
16

= +
7
16

N
10k

r
16 × 10k

= = =×
7
16

1
10k

N
10k

7 × 10k

16 × 10k

(N × 16) + r
16

+
r

16 × 10k

7
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...By pushing students to talk about math,” they will un-
cover their own misunderstandings about division and
make sense of the “division house.” 

We prefer to take a simpler, more grounded view on
the rampant non-learning of school mathematics in the
past decades. When teachers are taught only TSM, they
will naturally teach only TSM to their students. The rit-
ualistic inculcation of procedures in school mathematics
classrooms is mostly—though not totally—a reflection
of teachers’ content-knowledge deficit. But teachers are
not to blame for the sorry spectacle—the education es-
tablishment is. Why should we expect teachers to help
students understand school mathematics when we have
made no effort to help teachers understand it? It is alto-
gether unrealistic to expect teachers to uncover by them-
selves the substantial mathematical content that
undergirds the “division house” (see Theorem 1-3 above).
All of us in the education community share the respon-
sibility for helping teachers shed their baggage of TSM
and acquire a new and correct knowledge base for teach-
ing, but on this job, we have thus far fallen flat on our
faces. Once we succeed in providing teachers with the
mathematical knowledge they need for teaching, then it
would be realistic to consider how teachers could better
teach school mathematics. 

The main contention of this article is that TSM is de-
stroying school mathematics education. Now, one does
not make such a sweeping statement unless one has 
incontrovertible proof. In this case, the proof of how de-
structive TSM really is can be easily accessed everywhere:
pick up any of the standard school mathematics text-
books published between 1970 and 2015 or, in all likeli-
hood, if you pick up any of the current textbooks and
open it up to a random page, your chance of witnessing
TSM at work is likely to exceed 80%. It is not possible in
the year 2020 to have a meaningful discourse on improv-
ing school mathematics education without first initiating
some serious attempts to get rid of TSM.

This article has chosen to focus on one topic, long di-
vision, to reveal the truly anti-mathematical nature of
TSM. In our extended discussion, we have shown how
TSM has perverted the mathematics of this single topic
and made it unlearnable. But of course, we can say the
same about almost every topic in the mathematics of K-
12. If we want to change course and make school math-
ematics learnable, we must have the necessary political
will to make the change and the political muscle to im-
plement this change. But what has been long overlooked
is that, besides the will and the muscle, there must also
be a detailed version of correct and learnable school
mathematics from K to 12—all of it —that is universally

available to provide guidance. It is the absence of such
an alternate version that has shipwrecked every reform
since the 1950’s (e.g., Wu, 2020d, pp. 7-10 ). The author
has just completed a first attempt at presenting such an
alternate version in the form of six volumes: Wu (2011)
for elementary school, Wu (2016a) and Wu (2016b) for
middle school, and Wu (2020a), Wu (2020b), and Wu
(2020c) for high school. In such a large undertaking (the
six volumes comprise about 2,500 pages), some topics,
no matter how significant, will inevitably get short shrift,
and the long division algorithm is one such example.
This article may therefore be regarded as one of many
needed supplementary commentaries on these six vol-
umes. We hope that it will also help raise awareness of
how pervasive the damage done by TSM has been. 

It is quite common to hear people say, “I am not good
at math,” without a trace of self-consciousness or embar-
rassment. What they actually mean is something like “I
am no good at memorizing an unending collection of
meaningless factoids and bags of tricks for getting an-
swers (i.e., TSM).” Indeed, no one should feel self-con-
scious or embarrassed about not being able to learn
TSM. The urgent question is: can we spare the next gen-
eration the trauma—and the inevitable punishment for
failure—of a thirteen-year immersion in unlearnable
math?
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