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JMETC Readers,

This issue of the journal begins on a somber note, as we reflect on the
passing of Prof. Bruce Ramon Vogeli earlier this year. Given his immense
influence on the Program in Mathematics at Teachers College, Columbia
University, and on the revival of the Program’s journal (JMETC), the
editorial board decided it fitting to write a tribute in his memory.

Since the Teachers College community learned of Prof. Vogeli’s passing
in May 2020, there have been myriad tributes to him highlighting his
contributions to the field of mathematics education and his half-century
of service to Teachers College. In addition to these accolades, the editorial board felt it important to highlight
his enormous dedication to, and impact on, students in the Program in Mathematics.

Prof. Vogeli was tirelessly devoted to the Program and its students—inevitably, he was the first to arrive, and
the last to leave the office. He expended endless energy devising creative ways to ensure the program and all
of its projects ran smoothly and effectively; he always had a new idea or scheme to attain the absolute best from
students. And he was never too busy for even the most trivial of questions. Even a 30-second question might
turn into a 30-minute conversation. He cared deeply for students’ wellbeing, and relied on his decades of
experience in the field to find creative solutions to difficult problems in students’ academic, and even personal,
lives. He incessantly encouraged students to achieve their very best and, in this, he demonstrated full confidence
in their abilities—even for tasks students themselves thought impossible. His vocal support inevitably resulted
in an assurance and trust in their own capabilities along the way.

Prof. Vogeli dedicated an immense amount of time to creating opportunities and experiences for students—
ones that might advance their, not necessarily his, professional careers. He had a particularly special ability to
incorporate students into his own projects, and to tap into individual students’ interests and help them turn
these into fruitful ideas on which to base papers and curricular materials. Consistently, he created projects that
involved students in his own work, often giving the students ownership of projects he helped envision. Several
of his edited volumes feature chapters that he invited his students to write. He also devised and led the effort
to create handbooks of curricular materials, handing off the writing and editing to students and alumni,
maintaining only an advisory role. Indeed, this journal itself, the Journal of Mathematics Education at Teachers
College, was revitalized by Prof. Vogeli from an earlier departmental publication, specifically with the goal of
providing students and alumni from the program more opportunities to research, write, and publish their work.
He fostered leadership skills through this journal, by appointing students to serve as guest editors and allowing
them to oversee the entire peer-review publication process. It is not hyperbole to say that this journal, from its
inception, was centered around advancing the professional capacities, opportunities, and experiences for
students in the Program. Prof. Vogeli’s effort and dedication to students in these regards deserves equal praise
as to that of his other works in the field; his legacy will continue to impact the field of mathematics education
and its future generation of professionals and scholars for many years to come.

The Program in Mathematics, and its community, all owe a great debt of gratitude to Prof. Vogeli for the
enormous opportunities he created and the scholars he nurtured.

JMETC Editorial Board
Nick Wasserman (Chair), J. Philip Smith, Nicole Fletcher, and Hudson Gould

PROF. BRUCE RAMON VOGELI

v



In addition to this short tribute from the editorial board, we also include a survey of Prof. Vogeli’s professional life
and career, written by his Program colleagues, Profs. Alexander Karp and Erica Walker. This piece, entitled “On
Professor Bruce Ramon Vogeli” (pp. 1-5), opened a published volume that honored Prof. Vogeli.* The following is
a reprint from that volume. (It is important to note that since the publication of that volume, three more books
edited by Prof. Vogeli were published: Special Secondary Schools for the Mathematically Talented, Mathematics
and its teaching in the Asia-Pacific Region (with John Mack), and Mathematics and its teaching in the Muslim
World (with Mohammed El Tom).)

Professor Bruce Ramon Vogeli has been working at Teachers College, Columbia University since 1964.
Over the last half-century, he has taught dozens of courses, written dozens of papers and books, and
graduated not hundreds, but thousands of students. Indeed, just the number of doctoral students who
defended their dissertations with him as advisor, has long passed one hundred.

Vogeli belongs to the generation born right after those who fought in the Second World War, but the
experience of the war may nonetheless have been the most important factor in his development—direct
opposition to evil, demanding courage, hard work, self-sacrifice, and education, was crucial for his
formation as a human being. Moreover, the peace that came in 1945 was fragile, coming under threat
frequently and everywhere in the world, from Berlin to Korea. It is therefore not surprising that Bruce
Vogeli began his adult life by serving in the army, with which he was involved—counting his active
service and reserve service—for nine years altogether, starting in 1948. Among other things, he served
as a technical analyst, obtained his Bachelor’s and Master's Degrees, and worked as a schoolteacher of
mathematics during this time. In 1957, he enrolled in the graduate program at the University of Michigan
(Ann Arbor). Here, his knowledge of the Russian language, which he had learned while in the army,
proved useful: his dissertation, which he defended three years later, was devoted to Soviet mathematics
education.

The young Doctor of Philosophy began his academic career as an assistant professor at Bowling Green
State University, Ohio, becoming an associate professor in a few years. But now, the Russian language
once again turned out to be useful. After Khrushchev's visit to the United States in 1959, a decision was
made to organize a professor exchange—a Soviet scholar would come and teach a course in the United
States, and an American professor would do the same in the Soviet Union. Bruce Vogeli became this
American professor, traveling to Moscow in 1963.

It was exactly this period that witnessed the appearance of Soviet schools with an advanced course of
study in mathematics, one of the most remarkable phenomena in the global practice of mathematics
education. Vogeli observed their appearance and was the first to write about them for educators living
outside the Soviet Union. His book, Soviet Schools for the Mathematically Talented, became an important
milestone in international mathematics gifted education. It inaugurated a series of publications by Vogeli
which addressed Russia, advanced study of mathematics, comparative education, and even more
broadly, the development of curricula.

On Professor Bruce Ramon Vogeli
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These topics have continued to occupy Vogeli for much of his life, and perhaps no less importantly,
many of his students started working on them as well. Shortly after returning to the United States, Vogeli
became a professor at Teachers College, Columbia University, and naturally, his doctoral students
became interested in subjects that interested their teacher—one can name dissertations written under
his direction on mathematics schools in Hungary and Russia (Identification and Development of the
Mathematically Talented: The Hungarian Experience; Schools for the mathematically talented in the
former Soviet Union), or dissertations on education in Latin America (Relationships between
mathematical education and economic production in six Latin American countries from 1960 to 1970),
or dissertations on mathematics education in Africa  (Computers in Africa: Survey of availability of
computers, trained manpower, and computer education), or dissertations on how to develop and
evaluate a curriculum (Transformational geometry in the junior high school: An evaluation of curricular
units in 7th Grade; Game theory for the secondary mathematics curriculum)—the list could go on and
on. One can say that a school of comparative studies in mathematics education formed at Teachers
College, Columbia University—the “Vogeli School”. And in this respect, Vogeli became a worthy
successor in the tradition initiated by David Eugene Smith, who founded the Program in Mathematics
at Teachers College and established the field of comparative studies in mathematics education.

Vogeli also continued the other work of David Eugene Smith and subsequent generations of Teachers
College professors. The writing of textbooks is sometimes considered a less meaningful pursuit for a
scholar than the writing of research papers. It should not be forgotten, however, that it is precisely
textbooks that are read by millions of students and used by thousands of teachers. Without minimizing
the role or significance of research papers, we would argue that the experience of research studies and
research findings, multiplied by pedagogical experience, and embodied in the form of a generally
accessible school textbook, exerts an influence on the surrounding world faster, and often also more
effectively than even the most striking scholarly articles, which are read only by a very few. Bruce Vogeli
has authored and coauthored many dozens of textbooks—for elementary, middle, and high schools—
which have been used by literally millions of children (and not just in the United States, since these
textbooks have been translated into other languages.)

Lastly, and understandably, in over fifty years of working at Teachers College, Columbia University,
Vogeli has done a great deal both for Teachers College, and for many other universities. Consultations,
meetings, guest lectures, Fulbright professorships, and so on, and so forth—he has been invited all over
the world to help with the development of mathematics education.

Still, the most important part of his work, of course, has been at Teachers College itself. Here, he has
been a member of numerous committees and work groups, and he has chaired departments. But his
most important contribution has been as head of the Program in Mathematics. Having at one time
become the top place in the country for doctoral degrees in mathematics education, the Program has
retained its leading position in the field—more doctoral dissertations are defended here than anywhere
else.

There is yet another fact that must be noted. Over the last few decades, people's understanding of what
is important for a specialist in mathematics education has changed time and time again. At certain stages,
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the importance of a deep knowledge of mathematics was effectively rejected: people simplistically
argued that in the future graduates would unlikely need to teach any particularly recondite subjects,
and hence had no need to understand them themselves. The fact that a teacher must nonetheless have
a sound grasp of a subject in order to teach even its relatively basic sections somehow eluded people's
understanding. The result is that now, when no one seems to doubt the importance of content
knowledge, including pedagogical content knowledge, many institutions have neither the structure for
instruction in the corresponding areas, nor people who are capable of carrying out such instruction,
combining mathematical and pedagogical preparedness. The Program in Mathematics at Teachers
College, Columbia University has preserved its character, and the credit for this enormous achievement
belongs to Bruce Vogeli, who was able both to preserve and to expand important courses, and to find,
invite, and educate collaborators.

The fact that Vogeli has had such a long career does not mean that there has been any diminution in his
activity. In the last few years alone, he has published a number of books including Russian Mathematics
Education: Programs and Practices (coedited with Alexander P. Karp) and Mathematics and its Teaching
in the Southern Americas (coedited with Hector Rosario and Patrick Scott). These books both continue
the research that Vogeli has carried out earlier, and mark out new paths for study. Bruce Vogeli continues
to conduct seminars and teach courses for students, as he has done for decades, and to serve as their
dissertation advisor.

On Professor Bruce Ramon Vogeli, continued
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A Brief Introduction for Posterity

We begin this issue of the Journal of Mathematics Education at Teachers
College (JMETC) by noting its publication at a most unusual time in the
world. The COVID-19 viral pandemic has upended human life in almost
every part of the planet. Scholars agree that the influence of this epoch
will be seen for decades, if not centuries, to come. At the time of this
preface’s writing, some of the most essential functions of societies have
faced tremendous difficulty and even failure. Therefore, all who have
served others during this emergency deserve tremendous praise and
gratitude. Among these individuals are teachers, who have been charged
with meaningfully teaching the world’s future generations during a
global crisis. On behalf of everyone at JMETC, we wish to sincerely
thank—with the utmost sincerity and conviction—educators everywhere
for risking their lives and responding valiantly, despite the tremendous
associated burden and sacrifice. In honoring and commending the
world’s teachers, we proceed with the publication of this issue under
some of the most challenging and unprecedented circumstances in
modern history, so that it may serve as a symbol of educators’ unending
commitment and resilience. We are therefore humbled to present this
artifact to stand in honor of educators across the world. 

Reconsidering Elements of Research and Practice: 
Some Perspectives 

The Fall 2020 issue of JMETC presents six research and practice-based
articles that invite readers to reconsider research in practice from several
different perspectives. Some pieces reconsider traditional instructional
materials, lesson design, classroom discourse, and assessment. We also
present a paper that reconsiders research in understudied subfields of
mathematics education. Together, these contributions provide readers
with unique perspectives on contemporary research and practice and
offer clear directions for future work in these areas. 

To begin this issue of JMETC, Hung-Hsi Wu, a leader in the field of 
mathematics education, challenges our conception of K-12 mathematics
textbooks and their role in curriculum and instruction. Through his il-
lustration of how school textbooks present the division algorithm in a
manner that promotes mathematical misconception and misunderstand-
ing, Wu argues that K-12 mathematics teaching has been disserved by
the textbooks that are used. Accordingly, he calls for a reconsideration
of how textbooks are authored, valued, and used in school mathematics.
Within his critique, Wu offers possible remedies for the issues he claims
are inherent in what he refers to as “Textbook School Mathematics.”

PREFACE
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Next, Campbell and Yeo explore the nature of the contributions made by
students to mathematical discourse in the classroom. Complimenting re-
search focusing on teachers’ roles in scaffolding mathematical discourse,
Campbell and Yeo offer a theoretical framework for students’ responsibili-
ties in these interactions. The authors then utilize this framework to analyze
authentic vignettes of student discourse in middle and postsecondary class-
rooms. Campbell and Yeo’s work encourages practitioners at all educational
levels to consider students’ roles in generating and maintaining meaningful
mathematical conversations to promote understanding. 

Barba continues the focus on discourse through an investigation of mathe-
matical discourse outside of the classroom. Her analysis contributes to the
understudied area of mathematical discourse on social media. Barba reports
that social media discourse can reveal meaningful information about indi-
viduals’ mathematical mindsets and identities. Through a unique investi-
gation of discourse surrounding a mathematics problem posted to a social
media site, Barba provides a thought-provoking exploration of what can be
learned by individuals’ unfiltered interactions online. By framing her find-
ings within the context of existing research, Barba highlights the relevance
of her work and describes avenues for future research in this emerging field. 

MacMahon and Mongroo continue the issue with a timely analysis of liter-
ature on alternative mathematical assessments for postsecondary educators.
In detailing online, oral, and project-based assessments, McMahon and 
Mongroo highlight the potential benefits, drawbacks, and important con-
siderations for using each type of assessment in modern postsecondary
classrooms. In this guide for practicing teachers, the authors provide clear
and actionable information about non-traditional assessment as well as an
easy-to-use checklist designed to help teachers leverage these to assess their
students’ learning.

Next, we feature our “Notes from the Field” section, which offers short
papers detailing classroom practice. In the first piece, Simon describes how
her students utilized a dynamic geometry software program to create
personalized logos. This classroom episode provides readers with an
example of how one practitioner reconceptualized mathematical modeling
through the lens of design to engage students in the learning of geometric
transformations. In addition to providing lesson details, excerpts from
video-recorded lessons, and examples of student work, Simon demonstrates
the success of the current task and argues for incorporating more lessons of
this type into K-12 mathematics classrooms.

x
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The issue ends with a classroom episode from Wheeler and her colleagues
in which preservice and inservice teachers engage in a lesson incorporating
innovative robotic technology. Wheeler et al. describe how they engaged
students in a graduate mathematics education course in tasks that featured
the Sphero BOLT, a small robotic device that can be moved utilizing mobile
applications and basic computer code. The authors detail how they
demonstrated the teaching of the concepts of velocity, time, and distance
within an interdisciplinary lesson context combining supplemental
learning in technology, computer science, and even children’s literature.
Wheeler and her colleagues note how such a lesson helps preservice and
inservice teachers develop the capacity to design, structure, and implement
such an experience for their future or current students. The authors also
provide information for teacher educators interested in incorporating
technology such as the BOLT into mathematics education classes at the
postsecondary level. 

In closing, we note that one of the foundational principles of mathematics
education—and education in general—is that improvement stems from
reflection, reconsideration, and thoughtful action. The articles presented
herewith align with this purpose. 

Brian Darrow, Jr.
Anisha Clarke

Guest Editors
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For roughly the last five decades, our nation has had a
de facto national school mathematics curriculum, one that
has been defined—with perhaps a very small number of
exceptions in the last five years—by the standard school
mathematics textbooks. It is a fact, though not one that
has been explicitly discussed in the world of mathemat-
ics education, that the mathematics embedded in these
textbooks is extremely flawed, to the point of being un-
learnable (in the sense of unlearnable by a majority of stu-
dents). It is notable for its lack of definitions for concepts
(e.g., what is a fraction and what does it mean to multi-
ply two fractions?), lack of reasoning for skills (e.g., why
is negative times negative positive?), almost universal
lack of precision (e.g., is “30 = 1” a definition or a theo-
rem?), a general lack of coherence (e.g., are finite deci-
mals and fractions different kinds of numbers?), and a
pervasive lack of mathematical purpose in its presenta-
tion (e.g., telling students to learn to take the absolute
value of a number by killing the negative sign because
this skill will be on the test). For ease of exposition, we call
this particular version of school mathematics TSM (Text-
book School Mathematics). We will refer to pp. 22-30 (of
the pagination of the PDF) of Wu, 2020d for a more de-
tailed discussion of TSM. In retrospect, much of the tur-
moil in school mathematics education during the last

thirty years has revolved around disagreements on how
best to deal with the absurd situations that arise in our
school mathematics classrooms when teachers try to
teach something as nonsensical as TSM (Wu, 2020d). For
all these reasons and more, it is no longer possible in
2020 to discuss mathematics learning in schools without
directly confronting TSM. The central issue now is how
to eradicate TSM and help teachers and students,
schools, and districts transition to a different version of
K-12 mathematics that is transparent, and therefore
learnable. 

There is no better illustration of the fiasco that is TSM
than the multiple defects in how the concept of division
is taught in elementary school. The ubiquity of the lim-
erick, “Ours is not to reason why, just invert and multi-
ply,” points to the catastrophic failure in the teaching of
the division of fractions, but less well-known is the fact
that a failure of comparable magnitude has already oc-
curred in the teaching of division among the whole num-
bers. On the one hand, there is the concept of the division
of one whole number by another, such as 35 ÷ 7 or 36 ÷ 6,
and on the other, there is the concept of the division-with-
remainder of one whole number by another, e.g., the division-
with remainder of 35 by 6 for which the symbol 35 ÷ 6
cannot be used. These are two different concepts but

ABSTRACT The non-learning of school mathematics is now almost universally taken for granted,
but this does not have to happen. This article takes a critical look at the root of this non-learning
by pointing to the flagrant defects in the kind of mathematics—to be called TSM—that is
predominant in almost all the school textbooks. By analyzing how the long division algorithm is
taught and why it becomes so mystifying to school students, we explore how to provide the
missing reasoning that makes sense of the algorithm. The article also suggests some concrete steps
we can take to eradicate TSM.

KEYWORDS  algorithm, division with remainder, equal sign, long division, proof, reasoning, 
Textbook School Mathematics, TSM. 
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TSM makes believe that they can be conflated. In addi-
tion, TSM does not make explicit the fact that the long
division algorithm, e.g., of 35 by 6, is a shortcut that
yields the division-with-remainder of 35 by 6. These
flaws of TSM destroy the bridge that leads from the long
division algorithm to at least two topics in middle and
high school: the conversion of a fraction to a decimal by
“the long division of the numerator by the denominator”
(in a sense to be made precise later) and the division al-
gorithms for polynomials. This is but one example of
how TSM suppresses the coherence of school mathematics
and, instead, presents mathematics to students as a col-
lection of fragmented pieces of factoids to be memorized
by brute force. 

The mishandling of the long division algorithm by
TSM in elementary school and the ripple effects of this
particular failure in the school mathematics curriculum
are the main concerns of this article. It will also offer
some suggestions on how to improve the teaching of this
algorithm in grades 4-6. In the last section, we put this
discussion of the long division algorithm in the broader
context of how TSM has made school mathematics a hor-
ror story. We will also describe a recent development—
the publication of a detailed curricular road map for
making K-12 mathematics mathematical—that may
eventually render TSM a relic of the past.

Teaching Long Division in Grade 4

Consider teaching the long division 78 by 4 in grade 4.
The usual setup for long division is to draw a “division
house” (in the terminology of Green, 2014), putting 78
inside and 4 outside.

(1)

Students are told that the number 19 on the roof and the 2
at the bottom are the answer to the following question: if
they want to put 78 apples in groups of 4, how many such
groups are there, and how many apples (if any) are left
over? They are also taught to write this as 78 ÷ 4 = 19 R2. 

Fourth graders undoubtedly have a hard time under-
standing why the “division house” in (1) gives the cor-
rect answer of 19 equal groups of 4 with remainder 2.
The effect of the putative “equality” 78 ÷ 4 = 19 R2 on
their mathematics learning is, however, more insidious
and more lasting. First of all, mathematics education cer-

tainly should not engage in teaching something that is
blatantly false, but 78 ÷ 4 = 19 R2 is blatantly false. To see
this, if we divide 59 by 3, we also get 19 with the remain-
der 2. So we have 59 ÷ 3 = 19 R2. It follows that 59 ÷ 3 and
78 ÷ 4 (whatever they are!) must be equal since they are
both equal to 19 R2. Even fourth graders can sense that,
whatever “equality” means, the equality 59 ÷ 3 = 78 ÷ 4
looks really bad. To understand why, we must put our-
selves in the context of fractions to see that this implies

= , which implies 19 = 19 , which in turn implies2
4

2
3

78
4

59
3

= . The last equality is clearly false.2
4

2
3

Let us look at 78 ÷ 4 = 19 R2 from a different angle. It
would appear that TSM uses it as a shorthand for “do
the long division of 78 by 4 and the answer is 19 with re-
mainder 2.” It turns out that this kind of illegitimate
shorthand is part of a common pattern in TSM. Consider
the teaching of fractions in TSM, for example. The equal
sign in any of the formulas for arithmetic operation is al-
ways used as a call to do a computation or announce the
result of a computation (in the following, a, b, etc., are
whole numbers which may be assumed to be nonzero
where necessary):

None of these formulas are intended by TSM to con-
vey the message that the quantities on the two sides are
“equal.” Indeed, a correct mathematical exposition would
first define what it means to add, subtract, multiply, and
divide two fractions before proving that the fractions on
both sides of each of (2) – (4) are the same fraction, i.e.,
the same point on the number line. (See Wu, 2011, Sec-
tions 14.1, 16.1, 17.1, and 18.2.) However, TSM, as a rule,
does not provide definitions for concepts—it may provide
pictures and metaphors, but not mathematical defini-
tions—so that students are left in the dark about what a
fraction is and, therefore, also what it means to add, sub-
tract, multiply, and divide two fractions. In TSM, each
of these four equations, like 78 ÷ 4 = 19 R2, is nothing
more than a command to perform a computation, e.g.,
(4) says to divide by , simply invert and multiply by

. In TSM, it is irrelevant what “division” means; all that
matters is that students get the right answer when called
upon to do a division.
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To further reinforce our claim that TSM consistently
misinforms students about the equal sign, let us look at
what TSM says about equations and how to solve them.
According to TSM, an equation in one variable is an
equality of two expressions involving a “variable” x,
such as 3x + 1 = x – 5. The instruction from TSM on how
to solve such an equation is to go through the following
steps of symbolic manipulations: 

Step A: (–x) + 3x + 1 = (–x) + x – 5.

Step B: 2x + 1 = –5.

Step C: 2x + 1 + (–1) = –5 + (–1)

Step D: 2x = –63

Step E: x = –3

The answer of −3 is indeed correct, but what do steps
A–D mean? Take Step A, for example. TSM says it follows
from the equality 3x + 1 = x – 5 by adding the same ex-
pression (–x) to both sides. But in what sense is 3x + 1 =
x – 5 an equality? Since x is a variable, it can take on ar-
bitrary values such as x = 1. In that case, the left side is 4
and the right side is –4, and they are certainly not equal!
The same comment applies to Steps B, C, and D. The use
of the equal sign in this standard process of solving the
linear equation is therefore a mathematical travesty. So,
once again, what TSM wants is not for students to learn
how to use the equal sign correctly but only to know that
they should go on automatic pilot to do computations at
the sight of the equal sign (For a correct definition of
what an equation is and how to correctly solve the equa-
tion 3x + 1 = x − 5 via Steps A–D, see Sections 2.1 and 3.1
of Wu, 2016b.). Wu (2016b) shows how to solve the equa-
tion 3x + 1 = x − 5 correctly via steps A-D in Sections 2.1
and 3.1.

Thus, there should be no mystery about why students
fail to understand the meaning of the equal sign: TSM
has systematically corrupted their conception from the outset.
Garbage in, garbage out. This failure has drawn the atten-
tion of educators in the past four decades because it has
hampered students’ ability to learn algebra in middle
school (e.g., Falkner et al., 1999, Kieran, 1981, & Knuth
et al., 2008). However, the connection between TSM and
students’ failures in mathematics, particularly algebra,
seems to have been overlooked thus far. As mentioned
above, one cannot look past TSM in the year 2020 in any
attempt to improve student learning, so we hope educa-
tion research will, at last, recognize the need to eradicate
TSM from school mathematics education. 

Let us now revisit (1). A key point is how to introduce

the division symbol “÷” correctly to students in the con-
text of whole numbers. We define 35 ÷ 5 to be the whole
number k so that 35 = k × 5 ( in the same way that we in-
troduce the subtraction 17 – 9 to be the whole number 𝑚
so that 9 + 𝑚 = 17). Then it is clear that the equation 35 ÷
5 = 7 is correct since 35 = 7 × 5. In general, if we know
ahead of time that m is a multiple of n (n ≠ 0), then m ÷ n
is by definition the whole number k so that m = k × n. If,
however, m is not multiple of n, we are at a loss as to
what m ÷ n could mean as a whole number or two whole
numbers. There is, therefore, no way that something like
78 ÷ 4 = 19 R2 could make any sense as an equality about
whole numbers—unless you insist, as TSM does, that the
computation with the “division house” must have an answer
and “78 ÷ 4 = 19 R2” is the symbolic expression of choice.
School mathematics must reject such bizarre impulses
and teach students to rigorously observe that—in the con-
text of whole numbers—the division symbol m ÷ n (n ≠ 0)
can be used only when m is known to be a multiple of n.
This kind of precision is by no means inappropriate for
fourth graders. After all, even second graders learn not
to write 5 – 9, or in general k – l, when k < l in the context
of whole numbers. 

If we do not know whether or not m is a multiple of n,
then we have to introduce the concept of division-with-
remainder. Here is the definition of the division-with
remainder of m by n (n ≠ 0): it is an expression of m in
terms of n and two whole numbers q and r so that

m = (q × n) + r where 0 ≤ r < n                          (5)

The number q is called the quotient of the division-with-
remainder and r its remainder (both the quotient and the
remainder are unique, cf. Wu, 2011, pp. 104-105). If the
remainder r in the division-with-remainder is 0, then m
is a multiple of n and the two concepts of division of m by
n and division-with-remainder of m by n coincide. We note
that the restriction of 0 ≤ r < n on the remainder r is an
essential part of the definition because it guarantees that
the whole number q is the largest whole number so that
q × n ≤ m, as we now explain. 

In fourth grade, of course, we define division-with-
remainder only by using explicit examples. For the case
at hand: the division-with-remainder of 78 by 4 is 
expressed as

78 = (19 × 4) + 2   where “2” satisfies 0 ≤ 2 < 4        (6)

This equation implies that if there are 78 apples (i.e., the
left side of (6)), then it is the same number of apples as
in 19 groups of 4 apples (i.e., (19 × 4)) plus 2 extra apples
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on the side (i.e., the +2 on the right side of (6)). This is the
intuitive meaning of “division-with-remainder of 78 by 4”
that we want to convey to students. If we can teach students
how the “division house” in (1) leads directly to (6), then
the “division house” will become learnable mathematics
rather than just a senseless ritual.

Naturally, there are other expressions for 78 that 
superficially resemble (6). For example, 

78 = (18 × 4) + 6

But this is not the division-with-remainder of 78 by 4 be-
cause the “remainder” here, 6, does not satisfy the re-
quirement of being less than < 4 as stipulated in (6). So,
we take out another “group of 4 apples” among the 6
leftover so that the 18 equal groups of 4 become 19 equal
groups, and there are now 2 leftover as in (6). On the
other hand, we cannot get 20 equal groups of 4 out of 78
because 20 × 4 = 80, which is greater than 78. Therefore
the 19 in (6) is the largest whole number so that (19 × 4)
≤ 78. We usually express this by saying that 19 is the
largest multiple of 4 that is ≤ 78.

By tradition, we continue to call m the dividend and
n the divisor in (5). Thus, 78 is the dividend, 4 is the di-
visor, 19 is the quotient, and 2 is the remainder in the di-
vision-with-remainder (6). 

Knowing that the quotient is just the largest multiple
of the divisor not exceeding the dividend tells us that no
thinking is needed to get the division-with-remainder of
one number by another. For example, to find the divi-
sion-with-remainder of 78 by 4, we could simply write
out the multiples of 4 until we get close to 78: 

0, 4, 8, 12,...,68, 72, 76, 80,....

By inspection, 76 is that multiple. So, since 76 = 19 × 4
and 78 – 76 = 2, we see that the division-with-remainder
of 78 by 4 is given by (6), i.e., 

78 = (19 × 4) + 2  

While this way of getting the quotient and remainder
may be straightforward, it can get very tiresome very
fast: think about getting the division-with-remainder of
78765 by 4 by listing all the multiples of 4 up to and just
beyond 78765. We need a shortcut, and the “division
house,” i.e., the long division algorithm in (1) is that short -
cut, as we now show. After all, (1) is a bit more pleasant
than listing the multiples of 4 up to 80. 

The main purpose of this article is to tell the full story
about why the long division algorithm in (1) leads inex-
orably to (6), but grade four may not be the right place

to do this. Nevertheless, if we believe in teaching stu-
dents mathematics rather than just procedures, we have
to find ways of offering some grade-appropriate reason-
ing to make sense of (1) to fourth graders (in the lan-
guage of Wu (2006), we are performing mathematical
engineering to make (1) consumable by fourth graders).
Section 7.4 of Wu (2011) makes two such well-known
suggestions, and we will recap one of them here. For this
purpose, having a correct definition of division-with-re-
mainder as in (5) becomes an indispensable asset. First,
let us rewrite (1) by putting in the zero that was inten-
tionally omitted for simplicity: 

(7)

This rewrite makes it obvious that the subtraction 
78 – 40 = 38 is actually an intermediate step in the long
division (the omission of 0’s in (7) is of course a common
practice in the standard algorithms). We are now going
to make some sense of (7), as follows. By the definition
of the division-with-remainder of 78 by 4, we want a
whole number q and a whole number r so that

78 = (q × 4) + r where 0 ≤ r < 4   (8)

We are going to estimate what q must be. It cannot be
a 3-digit number because the smallest 3-digit number is
100, and if q has 3-digits, then the right side of (8) ≥ 400,
which would contradict (8). Next, we try letting 𝑞 be a 
2-digit number. If q ≥ 20, then the right side of (8) would
be ≥ 80, again impossible. So q < 20. Therefore, let q = 
10 + 𝑏 where 𝑏 is a single-digit number. Then q × 4 = 40 +
4𝑏. By (8), we have 78 = 40 + 4𝑏 + 𝑟, which gives

(78 – 40) = 4𝑏 + 𝑟 (9)

This explains the appearance of 78 – 40 = 38 in (7). Next,
we estimate what b should be. According to (9), r = 38 –
4b, and since 0 ≤ r < 4 by (8), we have 0 ≤ 38 – 4b < 4. At
this point, a knowledge of the multiplication table im-
mediately gives b = 9, so that q = 10 + b = 19. Thus, (9)
gives 38 = 36 + r, or 

38 – 36 = r

On the one hand, this explains the appearance of 38 – 36
= 2 in (7). On the other hand, we get r = 2. Referring back
to (8), we have arrived at 

1 9..
4 ) 7 8.. 
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78 = (19 × 4) + 2

and this is exactly (6). We have finally made some math-
ematical sense of the “division house” in (7) or (1) as well
as its kinship to (6). In a fourth grade or fifth grade class-
room, one should use the same strategy to do a few more
specific examples, e.g., why the long division of 138 by
5 leads to 138 = (27 × 5) + 3, or why the long division of
781 by 4 leads to 781 = (195 × 4) + 1. The latter example
will be particularly illuminating to students because they
get to see that the long division of 78 by 4 in (1) is com-
pletely embedded in the long division of 781 by 4.

(10)

Teaching Long Division in Grade 6

The teaching of the long division algorithm usually spans
grades 4-6. We now describe what students should learn
about the algorithm by the end of the sixth grade: they
should know why the long division of a two-digit number
by a single-digit number—such as 78 by 4—leads directly
to a division-with-remainder such as 78 = (19 × 4) + 2

First of all, what is an algorithm? This word is used 
frequently in elementary school, yet it is hardly ever ex-
plained and even more rarely taken seriously in teach-
ing. If the teaching of the standard algorithms would
include an explicit description in each case of what the
algorithm in question is (e.g., Wu, 2011, pp. 63, 74, 86-87,
108-109), then the mathematical quality of the teaching
would most likely improve, as we will try to demon-
strate with the long division algorithm. For school math-
ematics, we may define an algorithm to be a finite
sequence of precise instructions for carrying out specific
computations to result in the desired outcome at the end.
To describe the long division algorithm, we should write
down abstractly a finite sequence of steps so that, for any
pair of whole numbers m and n (n ≠ 0) , these steps will
lead to the division-with-remainder of m by n in the form
of (5). Something approximating this can be found in Wu
(2011), Section 7.3. In a sixth-grade classroom, however,
such an approach would be impractical. Instead, we will
explicitly describe such a finite sequence of instructions

for specific cases. For example, here is the long division
algorithm of 78 by 4. An overall comment is that each
step in this sequence is a division-with-remainder whose
divisor is always 4 and whose dividend will involve one
digit of the dividend 78 at a time.

Step 1. Perform the division-with-remainder so
that its dividend is the leftmost digit 7 of 78. (Recall:
its divisor is always 4.) 

7 = (1 × 4) + 3                      (11)

Step 2. Perform the division-with-remainder so
that its dividend is the sum of the next digit of 78
(which is 8) and 10 times the remainder of the 
preceding division-with-remainder (which is 3).
(Recall: the divisor is always 4.) 

38 = (9 × 4) + 2                      (12)

Step 3. The quotient of the division-with-remain-
der of 78 by 4 is obtained by “stringing together”
the single-digit quotients in Steps 1 to 2, namely, 
1 and 9. The remainder of the division-with-re-
mainder of 78 by 4 is the remainder of the last step
(Step 2), which is 2. 

One must convince sixth graders that, strange as
Steps 1-3 may seem, the long division in (1), upon closer
inspection, is nothing more than a schematic represen-
tation of Steps 1 and 2. What we want to show is that the
long division algorithm is correct, i.e., we have to prove the
following theorem.

Theorem 1. Steps 1 and 2 imply Step 3.

One may think that Theorem 1 is a waste of time because
to show Step 3 is correct, all we have to do is check that
78 = (19 × 4) + 2 is correct. But the theorem says much
more: it says that Step 3 can be derived strictly from Steps
1 and 2. Thus it is more than a numerical statement that
(19 × 4) + 2 is equal to 78. Rather, it asserts that we can use
reasoning alone to get to the equality 78 = (19 × 4) + 2 by
making use of Steps 1 and 2.  

Proof of Theorem 1. As in the proofs of the validity of
all the standard algorithms, the key ingredient is the ex-
panded form of a whole number (see Wu 2011, p. 20): 

78 = 70 + 8                      (13)
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Now, from (11), we get 7 = (1 × 4) + 3. Therefore, 

70 = (10 × 4) + 30

Substituting this value of 70 into (13), we get 
78 = (10 × 4) + 30 + 8, which is equal to 

78 = (10 × 4) + 38

(Observe that this corresponds to the subtraction 78 – 40
= 38 in the “division house” (1).) Substituting the value
of 38 in (12) into the right side of the preceding equation,
we obtain 

78 = (10 × 4) + (9 × 4) + 2 

Applying the distributive law to the first two terms on
the right side, we get 78 = (19 × 4) + 2. This shows that
the division-with-remainder of 78 by 4 has quotient 19
and remainder 2, exactly as claimed by Step 3. Theorem
1 has been proved. 

The first question we must ask is how this theorem
and its proof are superior to the above informal argu-
ment presented in connection with equations (8) and (9).
The answer is that insofar as the long division algorithm
is an algorithm, we are duty bound to give an explicit de-
scription of every step of the algorithm, and this the ear-
lier informal argument failed to do. Precision and clarity
matter in mathematics. Moreover, mathematics is about
the deduction of conclusions from assumptions, and the
preceding theorem and its proof present a textbook case
of this deduction process. By comparison, one is left un-
certain about the precise assumptions that were made in
the earlier argument. Also, see the comment following
the third remark on this page. 

The preceding proof should also be supplemented by
three additional remarks. First, the long division algo-
rithm exemplifies the recurrent theme of the standard
algorithms, which is to break up a multi-digit computation
into computations involving single digits (e.g., Wu, 2011,
Chapter 3). Thus, each of Steps 1 and 2 essentially
(though not literally) computes with the digits of the div-
idend 78 one at a time, and more importantly, the algo-
rithm itself computes the quotient 19 one digit at a time
(see Step 3). It may also be observed that although each
of Steps 1 and 2 is itself a division-with-remainder, it dif-
fers from the original division-with-remainder of 78 by
4 in that the dividend in each of Step 1 and Step 2 (7 and
38, respectively) is smaller than the original dividend of

78. While this fact may not seem to be much of an ad-
vantage when the original dividend (such as 78) is rela-
tively small, the advantage will become more
pronounced as the dividend gets larger. Our next exam-
ple of the long division of 781 by 4 will give a better idea
in this regard.

A second remark is that, to the extent that there should
be one general long division algorithm that is applicable
in all cases, one may not be able to discern from the pre-
ceding Steps 1-3 what the general long division algo-
rithm should look like. However, this lack of clarity will
disappear in our next two examples with a dividend of
three digits. For a more precise description of the general
case, see Chapter 7 of Wu (2011). 

A third remark is that one should take note of the fact
that the algorithm, as stated in Steps 1-3, completely ig-
nores the place value of the digits of the dividend. This
fact will be more forcefully brought out after we discuss
the division-with-remainder of 781 by 4. Contrary to the
emphasis placed by the education literature on the con-
cept of place value in discussing the standard algo-
rithms, a main selling point of the standard algorithms
is the mathematical simplicity of their execution because
these algorithms intentionally ignore place value (e.g.,
Wu, 2011, pp. 59, 66, 120-121). Place value becomes rele-
vant only when we try to prove that an algorithm is cor-
rect. From this perspective, the argument in connection
with equations (8) and (9) is unsatisfactory because it
does not draw a sharp line between the place-value in-
dependence of the algorithm itself and the key role place
value plays in the justification of the algorithm. 

We should also mention that there is a subtle issue in-
volving the implicit assumption in Steps 1 and 2 that the
quotient in each division-with-remainder of (11) and (12)
will be a single-digit number. We refer the reader to Sec-
tion 7.6 of Wu (2011) for the simple explanation.

As promised, we will next take up the division-with-
remainder of 781 by 4. In a typical sixth grade classroom,
this example would be optional, though highly desir-
able. 

Recall first of all that no thinking is needed for getting
the division-with-remainder of 781 by 4: count all the
multiples of 4 up to 781. However, this is clearly a te-
dious process and a shortcut is called for (the tedium
would be even more obvious if the dividend is not 781
but 781234). As we mentioned earlier, the long division
algorithm is the sought-for shortcut. Let us first recall
the long division in (10):
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(14)

It is easy to verify that this “division house” is merely a
schematic representation of Steps 1-3 of the following
long division algorithm of 781 by 4: 

Step 1. Perform the division-with-remainder so
that its dividend is the leftmost digit 7 of 781. (Recall:
its divisor is always 4.) 

7 = (1 × 4) + 3                      (15)

Step 2. Perform the division-with-remainder so
that its dividend is the sum of the next digit of 
781 (which is 8) and 10 times the remainder of the 
preceding division-with-remainder (which is 3). 
(Recall: the divisor is always 4.) 

38 = (9 × 4) + 2                      (16)

Step 3. Perform the division-with-remainder so
that its dividend is the sum of the next digit of 
781 (which is 1) and 10 times the remainder of the
preceding division-with-remainder (which is 2). 
(Recall: the divisor is always 4.) 

21 = (5 × 4) + 1                      (17)

Step 4. The quotient of the division-with-remain-
der of 781 by 4 is obtained by “stringing together”
the single-digit quotients in Steps 1-3, namely, 1,
9, and 5. The remainder of the division-with-re-
mainder of 781 by 4 is the remainder of the last
step (Step 3), which is 1. 

What we want to prove is that the long division algo-
rithm of 781 by 4 is correct, i.e., we have the following
theorem.

Theorem 2. The preceding Steps 1-3 imply Step 4. 

Proof of Theorem 2. Having gone through the proof of
Theorem 1 in detail, we will be briefer this time around.
As always, we begin with the expanded form of 781: 

781 = 700 + 80 + 1                       (18)

From (15), we get 

700 = (100 × 4) + 300

Substituting this value of 700 into (18), we have 
781 = (100 × 4) + 300 + 80 + 1, or 

781 = (100 × 4) + 380 + 1                      (19)

Now (16) implies that 380 = (90 × 4) + 20. If we substitute
this value of 380 into (19), we obtain

781 = (100 × 4) + (90 × 4) + 20 + 1

Applying the distributive law to the first two terms on
the right side, we get 

781 = (190 × 4) + 21

Now substituting the value of 21 in (17) into the right
side, we obtain 

781 = (190 × 4) + (5 × 4) + 1

Using the distributive law again on the right side, we 
finally arrive at 

781 = (195 × 4) + 1                       (20)

Since this is exactly the statement of Step 4 above, i.e.,
the division-with-remainder of 781 by 4 has quotient 195
and remainder 1, the proof of the theorem is complete.

Remarks
1.  Now, it should be clear from the repetitive nature of

the preceding Steps 2 and 3 how the long division al-
gorithm will proceed in the general case: Begin with
the leftmost digit of the dividend as in Step 1 above
and repeat the following process until you get to the
rightmost digit of the dividend: 

For the dividend of the next division-with-
remainder, add 10 times the remainder of the
preceding division-with-remainder to the next
digit to the right in the original dividend.

     Moreover, it is equally clear how to prove that the
algorithm is correct: start with the expanded form of
the original dividend and replace each term in the ex-
panded form by each of the divisions-with-remainder
given by the steps of the algorithm. 
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2.  Looking back over our work so far, we can see more
clearly the purpose of the long division algorithm: it
is to replace the original division-with-remainder by
a succession of simpler divisions-with-remainder in
each of which the dividend is smaller than the origi-
nal one. Thus, in the case of the division-with-remain-
der of 781 by 4, the dividends in (15)-(17) are 7, 38,
and 21; each is far smaller than 781.

3.  We are also in a better position now to understand the
statement that the long division algorithm ignores
place value. Let us compare the two long divisions: 78
by 4 and 781 by 4. The number 7 is the tens digit in 78
but is the hundreds digit in 781, yet the first steps of
the algorithm in the two cases, (11) and (15), are iden-
tical. Similarly, the number 8 is the ones digit in 78
but is the tens digit in 781, and yet the second steps
of the algorithm in the two cases, (12) and (16), are
again identical. These confirm a key fact about the
long division algorithm: it only looks at each digit of
the dividend but not its place value. (Let it be said one
more time that the proof of the validity of the algo-
rithm does take into account the place value of each
digit of the dividend.)

To consolidate our gains, we will take up the divi-
sion-with-remainder of 242 by 16 (this is the division-
with-remainder suggested in Green, 2014). Again, in a
typical sixth grade classroom, this would be optional,
though extremely instructive. The new feature here is
that the divisor is a two-digit number. In this case, the
long division algorithm of 242 by 16 is the following: 

Step 1. Perform the division-with-remainder so
that its dividend is the leftmost digit 2 of 242 
(recall: its divisor is always 16): 

2 = (0 × 16) + 2                       (21)

Step 2. Perform the division-with-remainder so
that its dividend is the sum of the next digit of 242
(which is 4) and 10 times the remainder of the 
preceding division-with-remainder (which is 2).
(Recall: the divisor is always 16.) 

24 = (1 × 16) + 8                        (22)

Step 3. Perform the division-with-remainder so
that its dividend is the sum of the next digit of 242
(which is 2) and 10 times the remainder of the 
preceding division-with-remainder (which is 8).

(Recall: the divisor is always 16.) 

82 = (5 × 16) + 2                        (23)

Step 4. The quotient of the division-with-remain-
der of 242 by 16 is obtained by “stringing together”
the single-digit quotients in Steps 1-3, namely, 0,
1, and 5. The remainder of the division-with-re-
mainder of 242 by 16 is the remainder of the last
step (Step 3), which is 2. 

Here is the “division house” of the long division of 242
by 16:

(24)

It is easy to see that this “division house” is nothing but
a schematic presentation of the preceding Steps 1-3. Let
us prove once again that the algorithm is correct. 

Theorem 3. In the long division algorithm of 242 by 16, Steps
1-3 imply Step 4. 

Proof. The expanded form of 242 reads: 

242 = 200 + 40 + 2 = 240 + 2                       (25)

Since the equality (21) is the trivial statement that 2 = 2,
we begin with (22), which implies that 240 = (10 × 16) +
80. Substituting this value of 240 into (25), we get 

242 = (10 × 16) + 80 + 2 = (10 × 16) + 82

Now substituting the value of 82 in (23) into the preced-
ing equation, we obtain 

242 = (10 × 16) + (5 × 16) + 2

Applying the distributive law to the first two terms on
the right side, we get 

242 = (15 × 16) + 2

which is exactly the statement that the division-with-re-
mainder of 242 by 16 has quotient 15 and remainder 2,
i.e., Step 4 is correct. The theorem is proved.

0 1 5..
1 6 ) 2 4 2.. 

0.. .......
2 4......
1 6......

8 2..
8 0..

2..

8 | HUNG-HSI WU



Again, the repetitive nature of Steps 2 and 3 helps to
give a clear conception of what the general long division
algorithm is about. This long division algorithm of 242 by
16 also serves to better highlight a special feature of the
long division algorithm in general, which is to break up
the original division-with-remainder of 242 by 16 into
more manageable divisions-with-remainder, each with
the same divisor 16, but with a far smaller dividend: the
division-with-remainder of 24 by 16, and the division-
with-remainder of 82 by 16. One more thing that is note-
worthy is that TSM teaches the long division of 242 by
16 by saying that, since 16 does not go into 2, one should
consider the first two digits 24 of 242 as the first divi-
dend. However, the long division algorithm of 242 by
16—being an algorithm—does not depend on this con-
tingent kind of judgment to “skip a step” in certain situ-
ations. Its instruction to perform a division-with-
remainder in Step 1 is meant to be carried out literally,
as it was in the equality (21).

Curricular Implications 

Because of the lack of space, we will be brief in explain-
ing how TSM’s mangling of the concept of division-
with-remainder has pernicious repercussions later in the
school mathematics curriculum. 

The concept of the GCD [greatest common divisor;
commonly referred to as greatest common factor (GCF)
in school mathematics] of two nonzero whole numbers
is a staple of elementary school mathematics, but TSM’s
failure to correctly teach division-with-remainder has
forced the teaching of gcd to be confined entirely to an
inspection of the factors of each number. In particular,
this failure results in the Euclidean algorithm not being
taught in K-12 as an effective method of getting the gcd.
While we are not strongly advocating here that the Eu-
clidean algorithm be taught in K-12, we can nevertheless
amplify the fact that, by not teaching division-with-re-
mainder properly, TSM hampers students’ future math-
ematics learning. Consider, for example, a favorite
activity in the learning of fractions: how to simplify the
following fraction to lowest terms: 

551
247

It is not so easy to factor either 551 or 247, but if we do
the long division of 551 by 247, we get

551 = (2 × 247) + 57

It is a fairly straightforward consequence of this equal-
ity that the two pairs {551,247} and {247,57} have exactly
the same collection of common divisors (e.g., Wu, 2011,
p. 465; Wu, 2016a, p. 210). But the second pair has the
advantage that 57 is considerably smaller than 247 or
551, and therefore, the search for the gcd of {247,57}
promises to be potentially easier than that of {551,247}.
As a matter of fact, it is so easy to get all the factors of 57
(they are 1, 3, 19, and 57 because 57 = 3 × 19) that we know
the common divisors of {247,57} are among 1, 3, 19, and
57. It is then painless to conclude that the gcd of {247,57}
is in fact 19, so that 19 is also the gcd of 551 and 247.
Hence,

The idea that the task of finding the gcd of two whole
numbers can be simplified by just one application of
long division—without a doubt—deserves to be taught,
but it cannot be taught if all that TSM has to offer about
long division is of the “551 ÷ 247 = 2 R57” variety.

Needless to say, the Euclidean algorithm is just an it-
eration of the preceding process (e.g., Wu, 2011, pp.
464ff.; Wu, 2016a, pp. 203ff). 

Of course, the numbers in the preceding problem
have been rigged to heighten the drama (!), but the mes-
sage should not be lost, to the effect that the long divi-
sion algorithm is not just a boring arithmetic skill but is
a very versatile mathematical tool (e.g., Wu, 2011, Part
4). More importantly, such an application of the long di-
vision algorithm is a powerful illustration of the coher-
ence of mathematics: the fact that there are hidden
connections between seemingly disparate topics, e.g.,
long division and simplifying fractions. TSM routinely
makes it impossible for students to see this and other
hidden connections. 

The issue of the coherence of mathematics naturally
brings us to two other topics in the school curriculum re-
lated to long division. First, the division algorithm for
polynomials of one variable states that given two such
polynomials F(x) and G(x) (with G ≠ 0), F can be ex-
pressed in terms of 𝐺 and two polynomials Q(x) and R(x)
as follows:

F(x) = Q(x)G(x) + R(x) where deg R(x) < deg G(x)

(see, e.g., Section 5.1 of Wu, 2020b). This is clearly an
analogy of division-with-remainder, with Q and R play-
ing the roles of quotient and remainder, respectively,
and F and G playing the roles of dividend and divisor,
respectively. This is not quite a direct generalization

= =551
247

19 × 29
19 × 13

29
13
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from whole numbers to polynomials. The difference is
that, for the division-with-remainder, the comparison of
the remainder to the divisor is by using the magnitudes
of the whole numbers, but the comparison in the case of
the division algorithm for polynomials is by using the de-
grees of the polynomials. Thus, polynomial division is
reminiscent of long division but not a generalization of it.
In advanced mathematics, both will become special cases
of Euclidean domains—again, a reminder of the coherence
of mathematics. But since TSM does not teach division-
with-remainder, there can be no such intellectual reso-
nance when students come to the division algorithm for
polynomials in Algebra II. This is an opportunity wasted. 

Our next topic is about the conversion of a fraction to
a decimal “by the long division of the numerator by the
denominator.” This is such a well-known topic in middle
school mathematics that it suffices to use a simple exam-
ple to illustrate the fundamental ideas involved. We
claim:

where 4375 is the quotient of the long division of 7 × 104

by 16. Here, the validity of the equality of the two num-
bers in (26) is not in question because, by the definition
of a decimal (e.g., Wu, 2011, p. 187),

and the fraction on the right easily simplifies to     . What
is at issue, rather, is why the fraction    is equal to the
quotient resulting from the long division of 7 × 104 by 16,
but with the decimal point inserted in front. (Just as in
Theorem 1, we have again an example of the emphasis
placed on the method of arriving at a conclusion rather
than on the validity of the conclusion itself.) This issue—
that the fraction is equal to the decimal produced by the
long division—is precisely what is not addressed in the
usual educational discussions, which are usually preoc-
cupied with the “repeating” property of the resulting
decimal. Therefore, what we seek is not just a proof of
(26) per se, but an explanation for the intrusion of long
division into this conversion procedure and how the
decimal point materializes. To this end, we will prove
something more general: let the long division of 7 × 10k

(k being any nonzero whole number) by 16 have quo-
tient N and remainder r, then

(27)

First, we show that (27) implies (26). Let k = 4 in (27).
Since 7 × 104 = 4375 × 16, we see that N = 4375 and r = 0
in this case. Therefore (26) immediately follows. Next, to
prove (27), we have by the definition of N and r that 

7 × 10k = (N × 16) + r

Therefore, 

The proof of (27) is complete. We also pause to note that
included in (27) is the assertion that if we let k = 5 or any
whole number > 4, (27) will still imply (26).
      It is not out of place to remark that the simplicity of

the preceding reasoning comes from the clear under-
standing of how long division leads to division-with-re-
mainder as in Theorems 1-3. We should also point out
that (27)—together with its proof above—remains valid,
verbatim,when the fraction is replaced by any fraction.
This is the key step that leads to the general proof of the
fact that the conversion of a fraction to a decimal can be
achieved “by the long division of the numerator by the
denominator.” For the details, see Section 3.4 of Wu
(2020c). (A simplified version without the use of limits
has been given in Chapter 42 of Wu, 2011.) 

The conversion of a fraction to a decimal by long di-
vision is a staple of school mathematics, and we take for
granted that someone must have written down a proof
of the correctness of this procedure. Yet, it seems almost
impossible to locate a correct proof in the recent educa-
tion literature. So long as TSM rules over school mathe-
matics and so long as it preaches that 16 ÷ 7 = 2 R2, there
can be no hope for such a proof. Once again, the surpris-
ing connection between long division and the conversion
of a fraction to a decimal is lost because TSM has ren-
dered mathematical reasoning impossible.

Must We Eradicate TSM? 

In her popular article, Elizabeth Green (2014) makes a
passing comment on the traditional way of teaching the
“division house” as nothing more than a ritualistic incul-
cation of mind-numbing procedures that turns “school
math into a sort of arbitrary process wholly divorced
from the real world of numbers.” Green’s article sug-
gests that the road to improvement is to change the teach-
ing of school mathematics by tapping “into what
students already understood and then [building] on it.

= 0.4375                        (26)7
16

0.4375 = 
4375

10,000

7
16

7
16

= +
7
16

N
10k

r
16 × 10k

= = =×
7
16

1
10k

N
10k

7 × 10k

16 × 10k

(N × 16) + r
16

+
r

16 × 10k

7
16
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...By pushing students to talk about math,” they will un-
cover their own misunderstandings about division and
make sense of the “division house.” 

We prefer to take a simpler, more grounded view on
the rampant non-learning of school mathematics in the
past decades. When teachers are taught only TSM, they
will naturally teach only TSM to their students. The rit-
ualistic inculcation of procedures in school mathematics
classrooms is mostly—though not totally—a reflection
of teachers’ content-knowledge deficit. But teachers are
not to blame for the sorry spectacle—the education es-
tablishment is. Why should we expect teachers to help
students understand school mathematics when we have
made no effort to help teachers understand it? It is alto-
gether unrealistic to expect teachers to uncover by them-
selves the substantial mathematical content that
undergirds the “division house” (see Theorem 1-3 above).
All of us in the education community share the respon-
sibility for helping teachers shed their baggage of TSM
and acquire a new and correct knowledge base for teach-
ing, but on this job, we have thus far fallen flat on our
faces. Once we succeed in providing teachers with the
mathematical knowledge they need for teaching, then it
would be realistic to consider how teachers could better
teach school mathematics. 

The main contention of this article is that TSM is de-
stroying school mathematics education. Now, one does
not make such a sweeping statement unless one has 
incontrovertible proof. In this case, the proof of how de-
structive TSM really is can be easily accessed everywhere:
pick up any of the standard school mathematics text-
books published between 1970 and 2015 or, in all likeli-
hood, if you pick up any of the current textbooks and
open it up to a random page, your chance of witnessing
TSM at work is likely to exceed 80%. It is not possible in
the year 2020 to have a meaningful discourse on improv-
ing school mathematics education without first initiating
some serious attempts to get rid of TSM.

This article has chosen to focus on one topic, long di-
vision, to reveal the truly anti-mathematical nature of
TSM. In our extended discussion, we have shown how
TSM has perverted the mathematics of this single topic
and made it unlearnable. But of course, we can say the
same about almost every topic in the mathematics of K-
12. If we want to change course and make school math-
ematics learnable, we must have the necessary political
will to make the change and the political muscle to im-
plement this change. But what has been long overlooked
is that, besides the will and the muscle, there must also
be a detailed version of correct and learnable school
mathematics from K to 12—all of it —that is universally

available to provide guidance. It is the absence of such
an alternate version that has shipwrecked every reform
since the 1950’s (e.g., Wu, 2020d, pp. 7-10 ). The author
has just completed a first attempt at presenting such an
alternate version in the form of six volumes: Wu (2011)
for elementary school, Wu (2016a) and Wu (2016b) for
middle school, and Wu (2020a), Wu (2020b), and Wu
(2020c) for high school. In such a large undertaking (the
six volumes comprise about 2,500 pages), some topics,
no matter how significant, will inevitably get short shrift,
and the long division algorithm is one such example.
This article may therefore be regarded as one of many
needed supplementary commentaries on these six vol-
umes. We hope that it will also help raise awareness of
how pervasive the damage done by TSM has been. 

It is quite common to hear people say, “I am not good
at math,” without a trace of self-consciousness or embar-
rassment. What they actually mean is something like “I
am no good at memorizing an unending collection of
meaningless factoids and bags of tricks for getting an-
swers (i.e., TSM).” Indeed, no one should feel self-con-
scious or embarrassed about not being able to learn
TSM. The urgent question is: can we spare the next gen-
eration the trauma—and the inevitable punishment for
failure—of a thirteen-year immersion in unlearnable
math?
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Discourse-rich, student-centered classrooms dominate
current trends in mathematics education policy, research,
and practice. Advocates of discourse-rich classrooms
suggest that students work with classmates to solve cog-
nitively demanding tasks, while teachers act as facilita-
tors, guiding students to co-construct knowledge with
their peers (e.g., Jackson et al., 2012; Stein et al., 2008; Van
de Walle et al., 2016). Curriculum and policy documents
in the U.S. (e.g., Common Core State Standards Initiative
[CCSSI], 2010; National Council of Teachers of Mathe-
matics [NCTM], 2000, 2014); Department of Education,
2014) consistently recognize the influence of discourse-
rich classrooms and suggest that “mathematical discourse
among students is central to meaningful learning of
mathematics” (NCTM, 2014, p. 35). Further, empirical re-
search suggests that discourse-rich classrooms increase
opportunities for authentic engagement and equitable
mathematical participation (Brown, 2007; Esmonde &
Langer-Osuna, 2013; Jarosz et al., 2017; Summers, 2006).
Still, there is much to learn regarding how discourse-rich
classrooms should operate. 

A growing body of research has examined classroom
norms (Partanen & Kaasila, 2015; Yackel & Cobb, 1996),
teaching practices (Herbel-Eisenmann et al., 2013; O’Connor
& Michaels, 2019), and the role of tasks (Henningsen &
Stein, 1997; Jackson et al., 2012) in discourse-rich class-
rooms. However, there is surprisingly little research de-
voted to learners’ responsibilities in such classrooms.
Several questions persist regarding student accountabil-
ity, such as the following: How should students commu-
nicate with one another to ensure an optimal environ ment
for learning? What communicative behaviors enhance
equal participation structures in collaborative environ-
ments? How should students resolve conflict when talk-
ing about mathematics? Answering these and other
related questions requires a student-level examination of
discourse-rich classrooms. To provide theoretical insight
into student-level factors of collaborative classrooms, it
is constructive to conceptualize first what students
should be doing. 

In this paper, we aim to share a theoretical model ex-
plaining students’ responsibilities for yielding mathe-

ABSTRACT While a growing body of research examines teachers’ facilitation of discourse-rich
classrooms, surprisingly little research is devoted to learners’ responsibilities in such classrooms.
In this paper, we share a theoretical model for explaining students’ responsibilities in yielding
mathematical learning in discourse-rich classrooms. These responsibilities consist of the following:
(1) determined listening and striving to understand others’ contributions; (2) proactive contri -
bution; (3) maintaining equal positioning; (4) willingness to resolve incommensurability; and 
(5) on-task talk. Each of the responsibilities is interdependent, suggesting that failure to meet one
responsibility decreases the likelihood that another responsibility will be met. The model suggests
important implications for supporting learners in discourse-rich classrooms. 
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matical learning in discourse-rich classrooms. The model
was refined through an iterative process of generating
cross-cutting themes from literature and our own expe-
riences researching and facilitating discourse-rich class-
rooms in middle-grade and university settings. Taken
together, we report a model that is informed by research
and corroborated by experience. We make no claims 
regarding the exhaustive nature of our model. Rather,
we identify several student-level factors that, based on
our research and experience, explain how students learn
in collaborative environments. In the next section, we
briefly describe our conceptualization of discourse-rich
classrooms through a discursive perspective on learning.

Discourse-Rich Classrooms

While discourse-rich classrooms vary in structure, they
exhibit two defining characteristics: (1) students actively
participate and communicate with others, and (2) learn-
ing is presumed to occur through mutual communica-
tion. First, students in discourse-rich classrooms actively
participate by communicating with their peers and
teachers. Depending on the classroom structure, this
may occur in a variety of ways. Stein and colleagues
(2008) suggested that discourse-rich classrooms proceed
in three phases: launching a mathematical task, explor-
ing a problem in small groups, and discussing and sum-
marizing the problem through whole-class dialogue.
They summarized a typical discourse-rich classroom as
follows:

During this ‘launch phase,’ the teacher introduces
the students to the problem, the tools that are
available for working on it, and the nature of the
products they will be expected to produce. This is
followed by the ‘explore phase’ in which students
work on the problem, often discussing it in pairs
or small groups. As students work on the problem,
they are encouraged to solve the problem in what-
ever way makes sense to them and be prepared to
explain their approach to others in the class. The
lesson then concludes with a whole-class discus-
sion and summary of various student-generated
approaches to solving the problem. (Stein et al.,
2008, p. 316) 

While not all discourse-rich classrooms proceed in a
similar manner as envisioned by Stein and colleagues,
students in discourse-rich classrooms actively commu-
nicate about mathematics rather than passively listening
to the teacher. 
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Another defining characteristic and by-product of the
first characteristic is that learning is presumed to occur
through mutual communication. Proponents of dis-
course-rich classrooms assume that students learn col-
laboratively by contributing mathematical ideas and
listening to others’ ideas (Scardamalia & Bereiter, 2006).
This is in stark contrast to teacher-centered classrooms,
wherein learning is presumed to occur through passive
participation. 

Mathematical Learning as Changing Discourse

In this paper, we assume that the goal of discourse-rich
classrooms is to produce mathematical learning. Align-
ing with Sfard (2008), we define learning as a lasting
change in discourse. Accordingly, communication in dis-
course-rich classrooms may be considered productive if it
leads to changes in students’ discourse that are durable
and desirable (Sfard & Kieran, 2001). Changes in student
discourse are durable if they are likely to continue in fu-
ture communication, while changes in student discourse
are desirable if they align with accepted discourse prac-
tices of the broader discourse community. Mathematical
discourse is distinguishable according to four features:
word use (e.g., keywords related to numbers and shapes),
visual mediators (e.g., operators, coordinate plane), nar-
ratives (e.g., theorems and definitions), and routines (e.g.,
repetitive patterns) (Sfard, 2008). Therefore, we will con-
sider discourse-rich mathematics classrooms to be pro-
ductive if they often lead students to exhibit a lasting
change in the way they communicate about keywords in
mathematics, visual mediators, narratives, and routines. 

To illustrate productive communication, consider a
scenario wherein two learners, Aaron and James, discuss
the area of a square. Aaron conjectures that the area of a
square is always larger than the side length. James con-
tradicts this assertion and shares a counterexample (e.g.,
side length = 0.4). After listening to James’ counterexam-
ple, Aaron agrees and suggests that if the side length is
between zero and one, the area is smaller than the side
length. In this exchange, Aaron changed his discourse in
a desirable way. If this change in discourse persists in fu-
ture communication, we may deem Aaron and James’
communication as productive.

For our model, we perceive Sfard and colleagues’
(Sfard, 2008; Sfard & Kieran, 2001) conceptualization of
mathematical learning and productive communication as
a primary goal for discourse-rich classrooms. Therefore,
our model is designed to describe student responsibilities
for engaging in such communication. In the following 
section, we describe five student responsibilities that we



find integral to promote learning in discourse-rich class-
rooms. Then, we explain how these five responsibilities
interact to form a model of student responsibilities.

Student Responsibilities for Discourse-Rich
Classrooms

Based on prior research and our experiences as educators,
we suggest five responsibilities for which students are ac-
countable in discourse-rich classrooms to promote math-
ematical learning: (1) determined listening and striving to
understand others’ contributions, (2) proactive contribu-
tion, (3) maintaining equal positioning, (4) willingness to
resolve incommensurability, and (5) on-task talk. We dis-
cuss each of these responsibilities by reviewing relevant
literature and examining episodes from our research
(Campbell & Hodges, 2020; Campbell & King, 2020;
Campbell et al., 2020) and teaching experiences.

Determined listening and striving to 
understand others’ contributions
To communicate in ways that lead to learning, students
must be determined to listen to peers and actively strive
to understand their peers’ contributions. Scholars refer
to this type of engagement as aligning frames (van de
Sande & Greeno, 2012), discussing proposals (Barron,
2003), and communicating effectively (Ryve et al., 2013;
Sfard & Kieran, 2001). van de Sande and Greeno (2012)
suggested that students working in groups align their
frames by either mutually drawing on common knowl-
edge or actively listening to other participants with rel-
evant knowledge to complete the task. Complementing
van de Sande and Greeno’s (2012) study, Barron (2003)
and Sfard and Kieran (2001) found students must be-
come active rather than passive while other group mem-
bers are talking to generate learning opportunities. In
short, determined listening and striving to understand others’
contributions refers to listening actively and seeking to
understand others’ mathematical strategies by asking
clarifying questions, building off others’ contributions,
and using other communicative behaviors that reveal a
motivation to understand.

Though active listening may seem straightforward, it
requires intense determination and often does not come
naturally to learners. In our research with middle school
students (Campbell & King, 2020; Campbell et al., 2020),
we noticed the rarity of active listening amongst stu-
dents working in groups. For instance, consider the fol-
lowing transcript between Josh and Amber as they
attempted to create an argument for the claim “the sum
of two odd numbers is even.” (utterances 1 – 3). 

1.   Amber: In every single-digit number, that is odd if
you know they will be even added together, then
adding an odd to a two-digit number that is odd,
then the answer will be even like the single-digit
number was.

2.   Josh: Alright, Amber. So... Alright, so. Um, if you go
back down to the basics, seven plus five um, is
twelve. Yeah, it is. OK. And seven plus three is ten.
And all the basic, tiny numbers—the one-digit num-
bers. They all equal evens, so that means, uh, because
it just depends on the last number in the number, uh,
to make it an even. So, since all of the one-digit num-
bers are even, it just comes down to the one-digit
numbers in the big number. You guys get what I'm
saying? Do you want to write something down?

3   Amber: No, you can write something down, but I
don't get what you're saying. Write in good hand-
writing, please.

Interestingly, in this exchange, Amber and Josh
shared nearly identical arguments (utterances 1 and 2).
Josh did not try to connect any of Amber’s ideas and, in-
stead, presented his argument as a new strategy. Neither
student asked clarifying questions nor attempted to en-
gage with the other’s idea, resulting in ineffective com-
munication. As a result, Amber implored Josh to simply
write his answer on the task sheet (“I don’t get what
you’re saying. Write in good handwriting, please”).
While not all instances of passive listening are so obvi-
ous, it seems that learners often do not actively listen to
understand one another’s contributions. Determined lis-
tening requires listeners to ask clarifying questions or
build upon others’ responses. For instance, consider the
transcript below extracted from a previous research proj-
ect (Campbell & Hodges, 2020) between three college-
aged learners discussing the meaning of the index of
terms in a set (utterances 4 – 10). 

4.   Katrina: Yeah. OK, j is the set of—and m, or j—and m
is—would be like the index of that set.

5.   Danielle: Is the index of j.

6.   Katrina: Index of j, OK.

7.   Danielle: Now, let’s make sure we can all understand
this before we write it down.

8.   Hayden: I don’t understand index.

9.   Danielle: It’s the little numbers.
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10.Katrina: It like defines, yeah. So, it defines the location
in the set. So, like if you said j sub m and you wanted
to find j sub 4, it would be 7 [showing example on
paper].

Danielle displayed active listening by clarifying Kat-
rina’s initial proposal (“Is the index of j.”). Hayden sug-
gested that she did not understand what Katrina meant
by the word index (“I don’t understand index.”), result-
ing in the group further explaining their use of the term
(utterances 9-10). Danielle’s suggestion, “Now, let’s
make sure we can all understand this before we write it
down,” clearly portrays a propensity for engaging with
others’ thoughts. While Katrina’s final explanation was
not mathematically complete (utterance 10), the group
came to a collective understanding of how they would
use indexes to define a number in a set. In this exchange,
all group members were determined to listen and re-
spond to one another. As a result, they generated oppor-
tunities to change their working mathematical definition
of and discourse related to the term index. Productive
communication is at least partially dependent on learn-
ers’ abilities to actively listen for understanding while
others are talking. 

Proactive contribution
The second student responsibility for discourse-rich
classrooms is proactive contribution, which refers to learn-
ers’ willingness to offer their mathematical insight while
collaborating with others. Authentic participation is cen-
tral to learning mathematics (Cuoco et al., 1996; Lave &
Wenger, 1991), so students must actively participate by
writing and sharing their problem-solving strategies.
Additionally, when students proactively contribute, they
allow for a diverse range of ideas to be heard, increasing
learning opportunities. Barron (2000) suggested mutu-
ality, or the potential for all group members to con-
tribute, is essential for effective group problem-solving.
In our research with college-aged learners, we found a
positive relationship between mutuality and productive
group engagement (Campbell & Hodges, 2020). 

In comparison with teacher-centered classrooms, it 
is simple to recognize why proactive contribution is 
necessary for productive discourse-rich classrooms. In
teacher-centered classrooms, a minority expert (i.e.,
teacher) offers most of the mathematical discourse. Sim-
ilarly, in discourse-rich classrooms without proactive con-
tribution, a minority of students offer most of the
mathematical insight. In both situations, the majority of
students are passive observers. If one is forced to partic-
ipate in such a way, it seems advantageous to observe

the most experienced and knowledgeable contributor.
Since the teacher is the most experienced and knowl-
edgeable contributor in most classroom settings, teacher-
centered classrooms seem a preferred environment for
learning compared with discourse-rich classrooms with
low student participation.

Maintaining equal positioning
Maintaining equal positioning is another student respon-
sibility that is important for promoting equitable math-
ematical participation structures. The literature suggests
that students position or label (van Langenhove & Harré,
1999) themselves and others while working collabora-
tively in ways that increase or inhibit opportunities for
authentic mathematical participation (Barnes, 2004;
Bishop, 2012; Campbell & Hodges, 2020; Wood, 2013;
Wood & Kalinec, 2012). Often, this act of positioning is
tacit, while other times, learners purposely create hier-
archies while working with others (van Langenhove &
Harré, 1999). Barnes (2004) found evidence for fourteen
different positions assumed by eleventh-grade learners
in Introductory Calculus classrooms. Learners assumed
positions of expert, audience, manager, helper, and so
on. Some of the positions, such as the position of expert,
allowed students to participate in mathematics authenti-
cally. In contrast, other positions, such as helper, rele-
gated students to perform menial tasks without engaging
in meaningful mathematics. Similarly, Bishop’s (2012)
analysis revealed the influence of positioning on mathe-
matical participation. In their analysis, two seventh-
grade girls constructed a hierarchy amongst themselves,
resulting in one girl being labeled as smart and the other
girl labeling herself as a less competent doer of mathe-
matics. These positions influenced the roles each girl as-
sumed while problem-solving. For instance, the girl
positioned as a competent doer of mathematics often
controlled problem-solving activities. Positions, whether
tacitly or purposely assigned, often result in hierarchical
classroom structures, privileging meaningful mathemat-
ical access for some and denying access for others. 

In our work with college-aged learners, we found that
students working in groups tend to assume positions
that fall on a spectrum, with passive observers on one
end of the spectrum, dominant controller on the other
end, and balanced negotiator in the middle (Campbell &
Hodges, 2020). Passive observers mostly listen to group
communication, while dominant controllers dominate
group discussion. Balanced negotiators both offer their
contributions and actively seek to negotiate with others.
Students are often forced into passive observer positions
by other group members who dominate group discus-
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sions. Conversely, students are sometimes forced into
dominant controller positions if other group members
refrain from contributing to group conversations. In short,
each group member’s positioning influences mathe -
matical participation. For collaborative engagement to
be productive, learners should seek to position one an-
other as equals. For instance, students should take turns
assuming positions of expert (Barnes, 2004) or other po-
sitions that provide access to participation. Additionally,
learners should actively seek to monitor their positions
and realize when they become dominant or passive. By
maintaining equal positioning and reflecting on their po-
sitions, students create equitable participation structures
in discourse-rich classrooms

Willingness to resolve incommensurability
Incommensurability, or conflicting discursive rules re-
lated to a similar topic, often occurs between learners
working in a collaborative environment (Sfard, 2019).
For instance, in the hypothetical scenario presented in a
previous section (“Mathematical Learning as Changing
Discourse”), Aaron and James suggested two mathemat-
ical strategies that contradict one another. When two or
more participants exhibit incommensurable discourses
related to a similar topic, they may resolve the conflict
through discussion, argue without a resolution, or avoid
conflict altogether. Avoiding conflict altogether reduces
opportunities for learning since students do not experi-
ence opportunities to change their discourse if their
ideas are unchallenged. Instead, to engage in productive
communication, students must be determined to resolve
incommensurability by discussing opposing strategies
(Chiu, 2000, 2008a, 2008b; Jarosz et al., 2017; Orme &
Monroe, 2005; Sfard, 2007, 2019) studies with ninth-
grade Algebra students revealed that polite disagree-
ments, or respectful arguments about mathematical
strategies, were significantly positively correlated with
success and creativity in group problem-solving. How-
ever, rude disagreements were negatively correlated
with group success, indicating that the nature of conflict,
whether polite or rude, influences the likelihood of re-
solving incommensurability. Other studies similarly cor-
roborate the influence of argumentation on learning
(e.g., Jarosz et al., 2017).

In our work with middle-school and college-aged
learners, we have come to learn that students are often
reluctant to resolve incommensurability. Instead of ar-
guing about the viability of their approaches, they often
‘agree to disagree’ or refrain from engaging in conflict
at all. For instance, consider the following exchange be-
tween two middle-grade learners who were working in

a group to construct an argument for the claim ‘the sum
of two odd number equals an even number’ (utterances
11 – 12; data obtained in a prior research project [Camp-
bell & King, 2020]). 

11.  Brittany: I just like added all the odd numbers 1 – 9,
and they all became even because they’re all divisible
by 2. And all numbers end with a 1 – 9, so if it's odd,
then it will, then you just add it with another odd
number, and it's divisible by 2.

12.  Felicia: Yeah, that’s...OK. So, I’ll write out what I put
out, you write out what you put, and then you write
out whatever you put.

During this exchange, instead of discussing their ar-
guments to decide which was viable or most efficient,
Felicia suggested the group simply compile all their
strategies on the task sheet (utterance 12). From our ex-
perience, this avoidance of critique and argumentation
is evident across the grade levels.

While students often avoid conflict, there are times
that they willingly seek to resolve incommensurability.
Danielle, Katrina, and Hayden’s (three college-aged stu-
dents) interaction on a mathematical proving task por-
trays the benefits of deliberating about the viability of
differing mathematical strategies (utterances 13-18; data
obtained in a prior research project [Campbell &
Hodges, 2020]). 

13   Katrina: We multiply 3, 5, and 7 just for kicks. It cre-
ates 105, and when you make—which it sounds
dumb. Would we be able to talk about 105 in terms
of what it means to be prime? Because then the only
factors of 105 will then be 3, 5, and 7. I don't know if
it's helpful.

14   Hayden: That's not the only factors. Those are the
prime factors.

15   Katrina: Those are the only ones.

16   Danielle: 21 is also a factor of 105.

17   Katrina: Well, yeah, but then that factors out to be 3
and 7.

18   Danielle:Right, which would make them prime factors.

The group deliberated about Katrina’s claim that 3, 5,
and 7 were the only factors of 105. By deliberating with
one another, the group came to the understanding that
3, 5, and 7 were the only prime factors of 105—not the
only factors, as Katrina originally suggested. As evidenced
by this interaction, willingly engaging in conflict to re-
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solve incommensurability provides stu-
dents with opportunities to change their
discourse in desirable ways. 

On-task talk
The final student-responsibility is on-task
talk. For discourse-rich classrooms to be
productive, students are responsible for
ensuring the majority of their talk is re-
lated to mathematics. Some researchers
found occasional off-task communication
can aid non-dominant students in gain-
ing power and agency in mathematics
classrooms (e.g., Esmonde & Langer-
Osuna, 2013). Without disregarding such
findings, empirical research also suggests
that on-task talk is highly predictive of
successful collaborative problem-solving
(Chiu, 2008; Jarosz et al., 2017). For in-
stance, Jarosz et al. (2017) investigated
predictors of successful group problem-
solving for college-aged learners in an in-
troductory statistics course. They found
that successful groups utilized a lower
proportion of off-task talk than less successful groups.
Research does not suggest that groups should never en-
gage in off-task talk. Indeed, such environments may be-
come unauthentic or unenjoyable for students. Rather,
learners should limit distractions and ensure the majority
of their talk is related to mathematics. In the next section,
we share our theoretical model of student responsibili-
ties in discourse-rich classrooms and explain how the
five responsibilities interact and influence one another.

Model of Student Responsibilities

Thus far, we have described five student responsibilities
that promote learning in discourse-rich classrooms. We
claim that the five responsibilities do not operate in iso-
lation. Instead, each student’s responsibility is inter-
twined with the others, influencing the likelihood that
another responsibility may be upheld. Figure 1 shows
the connection amongst the responsibilities. 

The double-sided arrow signifies their interdepend-
ence. To illustrate the interdependency, consider proac-
tive contribution and its relationship to the other four
responsibilities. Proactive contribution and determined lis-
tening and striving to understand others’ contributions are
interdependent because, when few students proactively
contribute, there are few opportunities to listen actively
with the purpose of understanding. Likewise, if learners

do not believe others are actively listening to their con-
tributions, they will be unlikely to contribute proactively.
Proactive contribution and maintaining equal positioning are
interdependent since students’ willingness to communi-
cate in groups influences how they position themselves
and others. Likewise, students’ positions influence how
compelled they feel to communicate in groups. Proactive
contribution and on-task talk reveal a trivial interdepend-
ency. Finally, proactive contribution and willingness to re-
solve incommensurability are interdependent since students
can only resolve conflict if multiple group members pro-
vide mathematical contributions. Likewise, students will
only be willing to resolve conflict if there is a group
norm of proactive communication amongst all group
members. Indeed, each student’s responsibility reveals
an interdependency on other responsibilities. Such an
interconnected model suggests learning in discourse-
rich classrooms is an intricate process. Failure to main-
tain one responsibility could inhibit the potential to
maintain other responsibilities, which is detrimental to
creating learning opportunities in a collaborative 
environment. The care required for the successful imple-
mentation of discourse-rich classrooms is well-docu-
mented in the literature (e.g., Sfard & Kieran, 2001;
Webel, 2013). Students must be supported in meeting
their responsibilities to create learning opportunities. 

Figure 1

Theoretical Model of Student Responsibilities in 
Discourse-Rich Classrooms

Note: This model shows the connection amongst student responsibilities
in a discourse-rich classroom.



responsibilities in discourse-rich classrooms. 
Another extension of our work is the consideration of

student responsibilities for meeting different goals in
discourse-rich classrooms. Based on Sfard and Kieran’s
(2001) conceptualization of productivity, we defined dis-
course-rich classrooms as productive if they often lead
students to change their discourse in durable and desirable
ways. This is an important outcome of education, but it
does not capture all the potential goals of social perspec-
tives on learning. For instance, some scholars suggest
that discourse-rich classrooms help learners engage in
important social skills such as argumentation and expla-
nation (Hmelo-Silver et al., 2007). The proposed model
does not take into consideration other potentially impor-
tant outcomes of discourse-rich classrooms. Future re-
search might expand, combine, or create new models of
student responsibilities for meeting various goals. 

In relation to practice, teachers might explicitly teach
learners their responsibilities for maintaining a productive
learning environment. However, unlike other strategies
for improving teaching and learning, our model should
be considered a whole unit. That is, it may be unproduc-
tive for learners to practice responsibilities one after an-
other until mastery is reached. The five responsibilities
work in tandem, and increased maturity in one respon-
sibility is likely to enhance other responsibilities. There-
fore, we suggest that practitioners introduce students to
their responsibilities and work as a community towards
maturation. Strategies for teaching the responsibilities
and making them normative in a classroom community
are beyond the scope of this paper. Still, reflection seems
a promising tool for increasing student awareness of
their actions (Wagner, 2007). By continually reflecting on
their progress, students might become more aware of
their abilities to meet their responsibilities for discourse-
rich classrooms. 

In closing, the field still has much to learn regarding
how discourse-rich classrooms should operate. Current
research is unbalanced, with most studies examining
teacher facilitation while placing little emphasis on stu-
dent-level factors. To understand supportive actions in
discourse-rich classrooms, the field might further exam-
ine how students communicate with their peers and
teachers. Analyzing such communication from the stu-
dent-level can reveal desirable or undesirable commu-
nicative behaviors, suggesting further implications for
pedagogical design. This paper might act as a starting
point for future empirical analyses of student-level re-
search in discourse-rich classrooms. 

Discussion

In this paper, we offered a theoretical model revealing
students’ responsibilities for productive, discourse-rich
classrooms. The model consists of five components: (1)
determined listening and striving to understand others’
contributions, (2) proactive contribution, (3) maintaining
equal positioning, (4) willingness to resolve incommen-
surability, and (5) on-task talk. Each of the components
are interrelated and influence one another, suggesting
that neglect of one component of the model decreases
the likelihood that another responsibility will be main-
tained. 

The five student responsibilities help learners engage
in productive communication in discourse-rich classrooms
to experience lasting mathematical discourse changes
(i.e., mathematical learning; Sfard, 2008). From a theo-
retical standpoint, the responsibilities provide learners
with opportunities for their current discursive rules to
be challenged, which can result in durable and desirable
mathematical discourse changes (Sfard, 2008). For in-
stance, active, determined listening and willingness to
resolve commensurability promote opportunities for
learners to confront others’ mathematical ideas. Simi-
larly, on-task talk ensures that learners’ mathematical
contributions remain the focal point of deliberation, which
is necessary for learners to experience opportunities to
change their mathematical discourse. Each responsibility
creates opportunities for conflict resolution, which can
lead students to change their mathematical discourse in
ways that are durable and desirable.  

Our model suggests several implications for future re-
search. The model leaves room for theoretical and empir-
ical refinement. Future research might uncover other
student responsibilities that are integral for productive dis-
course-rich classrooms or might determine more precise
linkages between responsibilities. For instance, while we
suggest that all responsibilities are interdependent, it is
possible that some linkages are stronger than others.
Therefore, some responsibilities may carry more weight
in determining the productivity of collaborative engage-
ment than others. Scholars might also seek to design a
pedagogical model for aiding learners in meeting their
responsibilities. Current literature on teacher facilitation
of discourse-rich classrooms mostly focuses on teacher
moves (e.g., revoicing) that promote a positive classroom
culture (O’Connor & Michaels, 2019). Scholars might 
extend research on teacher moves by empirically 
investigating strategies to aid students in meeting their
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Overview

Social Media
In January 2020, 4.5 billion people used the internet; of
those users, 3.8 billion engaged in social media (Nazir &
Dubras, 2020). The ubiquity of social media to daily life
has resulted in digital footprints that are increasingly in-
tertwined with social interactions that can render both
beneficial and harmful changes to mental well-being. For
instance, social media can beget positive health effects
when it is used to facilitate actions that increase our social
capital: 

Individuals who are members of a social network,
as opposed to those who are not, have access to in-

formation, social support, and other resources such
as other network members’ skills and knowledge
due to their network membership or social connec-
tions. (Bekalu et al., 2019, p. 69S – 70S)

As a result, some social media users have improved
their mental health. For example, social media users
have reported feeling a stronger sense of community and
being more emotionally supported (Royal Society for
Public Health, 2017). However, social media usage can
also lead to harmful consequences by increasing adverse
health effects, such as anxiety, depression, and poor
sleeping patterns. In May 2017, the Royal Society for
Public Health and the Young Health Movement sur-
veyed 1,500 people aged 14-24 in the UK and found that
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four of the five most used social media platforms for
their age demographic (Facebook, Instagram, Twitter,
Snapchat, and YouTube) increased their feelings of anx-
iety and depression (Royal Society for Public Health,
2017). Of note, YouTube was the only social media plat-
form to have shown a positive effect in this respect.  

Mathematical Discourse and Implicit Theories of
Intelligence

The relative anonymity afforded to social media users
contributes to discourse that is often unfiltered (i.e., au-
dacious and communicated without consideration to the
audience). So, what happens when you introduce an in-
nocuous mathematics problem to this nearly unbridled
comment culture? On its own, mathematics discourse
can be enlightening. Our response to a mathematics
problem can manifest our implicit theory of intelligence,
which Hong et al. (1995) describes as: 

Beliefs about the fundamental nature of intelli-
gence, specifically whether intelligence is a fixed
entity that cannot be changed (an entity theory) or
a malleable quantity that can be increased through
one’s efforts (an incremental theory). (p.198) 

Implicit theories of intelligence influence the motiva-
tional goal that we feel driven to pursue. Entity theorists
actively seek performance goals; in their framework, a
task’s outcome measures their limited intellectual capac-
ity. Incremental theorists value effort as a conduit for
success; therefore, they embrace learning goals and are
motivated by mastering new things. Notably, implicit
theories of intelligence can be domain-specific (Yeager
& Dweck, 2012) and can operate in tension with the gen-
erally held theory.

As we navigate cognitive challenges, we continuously
seek confirmation of our beliefs about intelligence, an en-
deavor referred to as “theory protection” (Plaks et al.,
2005). As a result, the receipt of negative feedback (or
stereotype disconfirming information) will cause both
types of theorists to exhibit defensive processing, with
more observed on the part of the entity theorists (Plaks
et al., 2001). Defensive processing can impact our recep-
tiveness to retain new information. For instance, follow-
ing negative feedback on tests of general knowledge,
Mangels et al. (2006) found that students’ beliefs and re-
actions to failure influenced their learning success by ma-
nipulating their attention and conceptual processing, two
functions that serve to either inhibit or increase gains in
knowledge. Two examples of defensive processing are
defensive inattention (a form of passive defense involv-

ing partial encoding of, or selective attention to, challeng-
ing information) and intensified scrutiny (a form of active
defense involving discounting or debunking challenging
information). When defensive inattention is not possible,
intensified scrutiny may be employed (Eagly et al., 1999;
Eagly et al., 2000; Plaks et al., 2005).

Our perception of negative feedback and its role in
confirming or disconfirming our implicit theories of in-
telligence varies. To the entity theorist, negative feed-
back equates to failure in intellectual ability. Given a
high grade, the entity theorist will continue to receive
high grades; however, given a low grade, they will con-
tinue to receive low grades for their poor performance
is a testament to their low, fixed intelligence that cannot
be improved (Grant & Dweck, 2003). This response to
failure is known as the helpless pattern and is character-
ized by the feeling that failure is out of one’s control. As
a result, entity theorists make ability attributions (e.g.,
“I’m not smart enough.”) and are more susceptible to
loss of self-worth (Grant & Dweck, 2003). Additionally,
there can be a normative comparison element to per-
formance goals (i.e., a desire to outperform others),
which may lead to a reluctance to perceive one’s per-
formance as a failure in the first place (Grant & Dweck,
2003). In this regard, entity theorists may engage in in-
tensified scrutiny, such as devaluing the problem, to pre-
serve their perceived rank.    

Incremental theorists exhibit a healthier response to
failure as it poses no threat to their intellectual capacity.
After a poor performance, the incremental theorist will
make effort attributions (e.g., “I need to study more.”) and
will likely persist to the point of improvement (Grant 
& Dweck, 2003). This response is coined the mastery-
oriented pattern and is characterized by linking failure to
modifiable factors, such as lack of effort (Diener & Dweck,
1980). As a result, they will seek positive interpretations
and growth (Diener & Dweck, 1980; Farrell & Dweck,
1985; Grant & Dweck, 2003; Mangels et al., 2006), which
will ultimately lead to more significant gains in knowl-
edge (Grant & Dweck, 2003). 

Unsurprisingly, entity theorists’ maladaptive tenden-
cies can affect self-esteem and, in the case of mathemat-
ics, lead to mathematics anxiety. These learners are more
likely to equate genius with low effort, an attribution
which encourages them to value speed—with respect to
recall of facts, the time it takes to solve a problem, and
the general brevity of all mathematics solutions—over
effort. Unfortunately, the role of speed in mathematics
is misrepresented in popular culture, much to the detri-
ment of mathematical learning: when we equate skill
with speed and value fast recall over deep conceptual
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understanding, mathematics anxiety increases, and cre-
ative inquiry declines (Boaler & Zoido, 2016). 

Mathematical Discourse and Mathematical
Identities
Several other misconceptions regarding mathematics are
likewise promulgated by popular cultures, such as the
various tropes that dominate our mental schemas re-
garding those characteristics that define a mathemati-
cian: the eccentric Einstein-like older man; the young,
tortured genius; and the genetically different savant
(Barba, 2018). Additionally, there is a “white male myth”
regarding an innate proclivity for mathematics that per-
meates Western culture (Stinson, 2013). Not only does
this myth exacerbate stereotype threat (e.g., race, gen-
der), but it has been shown to impact the mathematics
achievement of marginalized groups (Spencer et al.,
1999; Steele, 1997; Steele & Aronson, 1995). These pre-
conceived and developing notions that we have regard-
ing mathematics and mathematicians shape our
attitudes and preferences towards mathematics, two fac-
tors, of many, that contribute to one’s mathematical
identity. 

Mathematical identity “can be broadly defined as
participative, narrative, discursive, psychoanalytic or
performative” (Darragh, 2016, p. 24). Theorists dispute
its classification as conscious versus subconscious, inde-
pendent versus interdependent, or an action versus an
acquisition. Nonetheless, mathematical identity likely
encompasses each of these attributes to some degree. In
her examination of identity in mathematics education
research, Darragh (2016) describes it as an adjustable
lens through which a magnification reveals interactions
on the individual scale and zooming out reveals inter-
actions in a socio-political context. Then, she writes:

We can look at the big picture, that is, at issues of
mathematics learning in general. We can look at
the experiences of specific groups of people and
issues of equity. Or we can look at the individual
level and try to understand learners’ relationships
with mathematics. (p. 20)

Regardless of the scale, social interactions are a critical
element of mathematical identity. Thus, mathematical
identities are developed and enforced via mathe matics
socialization through exchanges within “communities of
practice” (Wenger, 1998) or “figured worlds” (Boaler &
Greeno, 2000; Holland et al., 1998). Martin (2012) de-
scribes mathematics socialization as referring to “the ex-
periences that individuals and groups have within a

variety of mathematical contexts … that legitimize or in-
hibit meaningful participation in mathematics” (p.57).
Arguably, social media has emerged as a source of math-
ematical socialization through which (non)mathematical
identities are fostered. According to Epstein et al. (2010),
young people use the mathematical discourse circulated
in popular culture to negotiate their own identity mak-
ing. Therefore, discourse is not only an integral contrib-
utor but also a conduit for identity formation. Every
occasion for communication enables participants to con-
struct and negotiate their self-image and social position
(Davies & Harré, 2001; Waring, 2018). This negotiation
is a perpetual process: mathematical identities are the
byproducts of constant, and often subconscious, adjust-
ments made from exposure to various narratives such as
racial, gender, cultural, historical, or political.  

Furthermore, mathematical identity is revealed in
discourse through the negotiation of positional actions.
Positioning is the reciprocal and dynamic process
through which roles are actively established, altered,
and reestablished for those engaged in the interaction
(Davies & Harré, 1990). According to Davies and Harré
(2001), “Positions are identified in part by extracting the
autobiographical aspects of a conversation … to find out
how each conversant conceives of themselves and the
other participants by seeing what position they take up”
(p. 264). Furthermore, “an explicit positioning of self nat-
urally involves an implicit positioning of other” and vice
versa (Minow, 2012, p. 98). Therefore, mathematical
identity can be interpreted as the “social positioning of
self and other” in mathematics discourse (Bucholtz &
Hall, 2005, p. 586). Finally, the relative anonymity of so-
cial media emboldens users who feel immune to reper-
cussions; as a result, their discourse can devolve into
audacious criticism of others. Consequently, positioning
acts are more conspicuous and intensify as social inter-
actions expand from one-to-one to one-to-millions.  

Implicit Theories of Intelligence, Identities, 
and Positive Outcomes
According to Jetten et al. (2011), social interactions and
identity can impact mental and physical health in a pro-
found way. Extant studies have shown mathematical
identity to be fundamental to the development of attitude,
disposition, emotional well-being, and a general sense of
self (Bishop, 2012). Additionally, mathematical identities
are indicators of mathematical performance, persistence,
and success (Cribbs et al., 2015). Implicit theories of intel-
ligence have likewise been shown to be fundamental to
academic success and linked with social interaction (e.g.,
adult feedback practices) (Blackwell et al., 2007; Plaks &
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Stecher, 2007). For instance, incremental theorists receive
higher grades, are reported to enjoy and value academics
more, have increased motivation, choose more positive,
effort-based responses to failure, are more resilient,
demonstrate greater confidence, and experience greater
overall gains than entity theorists (Aronson et al., 2002;
Blackwell et al., 2007; Boaler, 2016; Dweck, 2016; Good et
al., 2003). 

However, studies have yet to show how social media
interactions, primarily through written discourse, relate
to implicit theories of intelligence and mathematical
identities. Characterized by controversy, social media
discourse surrounding mathematics problems is often a
mélange of uninhibited reactions. Further, social media
enables interaction among larger and more diverse
groups of people. Therefore, it is important to view this
particular form of discourse through a critical lens to de-
termine the role it has in developing mathematical mind-
sets and identities, and its effect on positive outcomes,
such as mathematics success.

Purpose of the Study

The purpose of this study was to examine the discourse
in the comments section of social media posts regarding
a mathematics problem and analyze the underlying nar-
ratives which reveal the mathematical mindset and
mathematical identity of each user.

Method

The current study focused on the discourse in the com-
ments section of the same mathematics problem posted
twice to YouTube in February 2016 (Figure 1). The math-
ematics problem was described as “simple-looking” and
advertised as both an emoji mathematics problem and
an algebra fruit puzzle. Both YouTube videos explained
the controversy surrounding the problem, in particular,
that it was first posted to Facebook, where it confused
over two million people. Notably, the answer to the
problem was given at the end of each video. 

The comments of 1,046 YouTube users were exam-
ined (107 from the first video, and 939 from the second
video). All comments were retrieved by the researcher
by visiting each YouTube page and scrolling down until
there were no remaining posts. Necessarily, this process
was conducted over the same time period so that the
posts appeared in the same order and could be tracked.
Only original posts were studied; replies were only con-
sidered if the author of the original post engaged in dis-
course with other users. It was not possible to obtain any
demographic information regarding each YouTube user.

The research followed a qualitative approach (Creswell,
2015) characterized by finding meaning through the sub-
jective interpretation of participants’ discourse. The phe-
nomenon to be studied was the indicative nature of
discourse to reveal a mathematical mindset and mathe-

Figure 1

Viral Mathematics Problem

Note. Talwalkar, P. (2016). Viral Facebook
math problem stumping the internet. 
(https://mindyourdecisions.com/blog/2016/
02/18/viral-facebook-math-problem-
stumping-the-internet-answer-to-coconut-
plus-apple-plus-banana/)   
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having a fixed mathematical mindset, the researcher
looked for indicators in their discourse that suggested
the users (1) viewed efficacy as a measure of intelligence,
(2) emphasized speed over effort, and (3) criticized the
problem, such as devaluing or debunking it, to preserve
their perceived rank.  

In contrast, the growth mathematical mindset,
aligned with an incremental theory in mathematics, is
associated with effort attributions, learning goals, and
the mastery-oriented response to failure. To identify a
social media user as having a growth mathematical
mindset, the researcher looked for indicators in their
written discourse suggesting they (1) viewed efficacy as
distinct from intellectual capacity, (2) sought positive in-
terpretations of their failure, (3) valued effort over speed,
and (4) were disinterested in their perceived rank. 

Finally, the social interaction on the YouTube page al-
lowed each participant an opportunity to reveal their
mathematical identity via the self-image they wished to
convey to their audience (Markus & Warf, 1987). The
mathematical identity examined was interactional (War-
ing, 2018); therefore, mathematical identity was deter-
mined by the positioning acts (Davies & Harré, 1990)
evident in the written discourse of each user. The type
of communication studied was one-sided; thus, only
first-order positional actions were considered. Six posi-
tions emerged from the analysis of discourse: (1) a posi-
tion of superiority; (2) a position of authority/power; (3)
a position of spectator; (4) a position of inferiority; (5) a

matical identity. The aim of the qualitative analysis was
not to determine the number of YouTube users with the
right answer but, rather, to investigate their discourse to
identify the mathematical mindset and mathematical
identity of each user. 

Qualitative analysis began with coding strategies de-
rived from Grounded Theory (Glaser & Strauss, 1967).
Open coding (Boeije, 2010) was done mostly at the be-
ginning of the data analysis. During this process, the re-
searcher began to divide the posted comments into
groups to form preliminary categories. The enumerated
characterizations of these codes were then augmented
during the axial coding process (Boeije, 2010) to boost
the efficiency of the existing codes. Comments were only
coded for one theme; however, if a user engaged in more
than one comment, the username was tracked, and, in
some instances, the initial code was changed.  

In determining the quality of comments, underlying
themes emerged, such as an apparent eagerness to boast
about their intelligence, diminish the credibility of the
mathematics problem, admit their faulty logic, denigrate
their self-esteem, or voluntarily explain the solution for
other users. To that effect, six codes were formed (Table 1). 

After the initial open and axial coding process, selec-
tive coding (Boeije, 2010) was implemented in conjunc-
tion with Discourse Analysis (Waring, 2018) to
determine the mathematical mindset and mathematical
identity of each user (Table 2). Notably, mindsets can
vary by subject (Yeager & Dweck, 2012) and operate in
tension with the general mindset.
Thus, the YouTube users in the pres-
ent study were identified as having
a mathematics specific mindset
rather than a general mindset, as
one cannot assume their general im-
plicit theory of intelligence through
the scope of a mathematical lens.
Mathematical mindset was deter-
mined by examining written lan-
guage indicators relative to
attributions, motivational goals, re-
sponse to failure, defensive process-
ing, and normative comparisons. In
line with an entity theory in mathe-
matics, the fixed mathematical
mindset is linked with ability attri-
butions, performance goals, the
helpless response to failure, passive
and active defensive processing,
and normative comparisons. Thus,
to identify a social media user as

Coded Comment Characterization

This is easy

This is not fair

I was wrong

I am not smart

Let me explain my reasoning

Other

Table 1

Coded Comments and their Characterizations Determined During the 
Open and Axial Coding Process

•  Emphasis on the short amount of time it
took to solve the problem

•  Emphasis on age
•  Boasts about own intellectual ability
•  Disparages people who get the 
problem wrong

•  Disagrees with the presented solution
•  Devalues the problem

•  Willingly admitted they were wrong

•  Denigrates self for getting the wrong
answer

•  Provides instruction for other people in a
non-disparaging way

•  Comments that did not resemble other
categories and could not be consolidated
into a category of their own

•  Most often, single number answers to the
mathematics problem 
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position of instructor/solidarity; and (6) a position of rel-
ative indifference. The emergent themes of positional ac-
tions found in the present study were like those described
in Bishop’s (2012) study of mathematical identities in the
classroom.  

Analysis

This Is Easy
This discourse exhibited an investment in performance
with a focus on speed and age.  Speed was emphasized
by users explicitly writing their time or using words to
delineate their efficiency: “I found out the second I saw
it.” A link between age and mental prowess was empha-
sized by users indicating their grade level in school or
writing comments such as “Got it right on the first try,
and I’m 11.”  

Additionally, these users were eager to boast about
their intellectual ability, writing comments such as,
“Honestly, that was easy. I took the gifted test, and
things like that were all over the place,” and “It’s really
very simple for me to solve math problems.” They also

disparaged others who either got the problem wrong or
were too baffled to find a solution. For example:

“Honey, I did this in year 1.”

“2 million people are unable to answer the ques-
tion. What dummies they are! Isn’t it so simple?”

“This is a toddler’s math problem.”  

“The sad thing is, someone thought it was 7.”

One user even denigrated the person that posted the
problem: “You just need basic arithmetic to solve it, the
person who posted it must be uneducated.”

Ultimately, these users were identified as having a
fixed mathematical mindset: they valued speed over ef-
fort, equated efficacy to intelligence, and cared about their
normative comparison. Furthermore, their discourse was
indicative of a mathematical identity dependent on their
position of superiority: it was evident that they desired to
assert their elevated proficiency in mathematics and
maintain their high standing. Notably, their role in the
narrative assigned an inferior status to the other users.  

Coded Comment Characterization

Mathematical Mindset:
Determined by examining
written language indicators
relative to attributions,
motivational goals, response 
to failure, defensive processing,
and normative comparisons

Table 2

Mathematical Mindsets and Identities Determined During the Selective Coding Process

Fixed:
●  Viewed efficacy as a measure of intelligence
●  Emphasized speed over effort
●  Scrutinized the problem, such as devaluing or debunking it, to preserve their
perceived rank

Growth:
●  Viewed efficacy as distinct from intellectual capacity
●  Sought positive interpretations of their failure
●  Valued effort over speed
●  Were disinterested in their perceived rank
Position of Superiority:
●  Asserted their elevated proficiency in mathematics and desired to maintain their high
standing

Position of Authority/Power:
●  Asserted their superior proficiency in mathematics while simultaneously executing
their authority to exert control over the narrative 

Position of Spectator:
●  Neutral bystanders to a mathematical debate
Position of Inferiority:
●  Asserted their low normative comparison to others and desired to maintain it
Position of Instructor/Solidarity:
●  Exhibited both an intent to encourage learning in other users and also solidarity in
their understanding of how others had failed

Position of Relative Indifference:
●  Disinterested in engaging further in discourse 

Mathematical Identity:
Determined by written 
language indicators relative 
to positioning acts

28 | KIMBERLY BARBA



This Is Not Fair
These users disagreed with the presented solution and
devalued the problem. The discourse from these com-
ments revealed defensive processing that impacted the
users’ ability to process new information, namely, that
the problem was not algebraic. They were guarded, over-
sensitive, and contentious in their inability to accept fail-
ure. They engaged in intensified scrutiny to debunk or
devalue the mathematics problem itself.  Some were po-
lite (e.g., “I’m afraid that you have a mistake in there”)
while others were blunt (e.g., “You are wrong”). Some
went so far as to justify their “non-agreement”: 

“I disagree since there is no ‘+’ between the indi-
vidual bananas and coconut halves adding them
is not mathematically correct, you should multiply
them instead of adding them, giving a final answer
of 14.24264069.”  

“At 2:06 you call the picture difference half a co-
conut ... but by the PICTURE they are not equal
sizes … so we are splitting hairs in non-agreement.
So depending on how you interpret the ‘pictures’
will adjust your answer. It boils down to doing the
simple algebra properly and consistently. If you
decide to be picture accurate though then you
should consider using 2/3 for the last coconut pic-
ture yes?”

Whereas others exposed it as a popularity-generating
scam: “These are designed to purposefully trick people
to argue the answer, and create comments to buff popu-
larity.” Some even accused it as being a mostly observa-
tional problem (e.g., “1% maths and 99% observation”),
denouncing it as a trick (e.g., “Fun vid but I lost interest
when the ‘trick’ part came up”) or an optical illusion in-
tent on “pure deception.” They even scrutinized the
quality of the drawings: 

“It was clearly drawn poorly on purpose to cause
problems.”

“That coconut looks more like 2/3 than 1/2.”

“This is IKEA’s view on math problems making
something really simple more difficult just because
they [want] to draw pretty pictures.”  

There was also an abundance of sarcasm, “Maybe you
need to count each pixel of the drawn icons separately,”
and insolence, “This is why we use letter variables instead
of pictograph variables.” Additionally, many of these
comments were aggressive in their delivery, using exple-
tives or all capital letters. Finally, some users employed
more complex vocabulary and mathematics to assert their
dominance over the correctness of the solution:

“There’s only ONE APPLE in the image represent-
ing a value of TEN. Thereby you cannot clearly es-
tablish a consistent rule that the images represent
real rational numbers that can simply be counted
by observing the image, only that there is a spe-
cific value as defined by a specific image. Incon-
sistent rules of variable declaration yields a
[expletive] math problem.”

Ultimately, these users were identified as having a
fixed mathematical mindset: they engaged in defensive
discourse and demonstrated a maladaptive response to
failure. Furthermore, their discourse was indicative of a
mathematical identity dependent on a position of au-
thority. Their comments enforced their position of power
by asserting their superior proficiency in mathematics
while simultaneously executing their authority to con-
trol the narrative. They governed over the solution to
the problem in an endeavor to subjugate those who dis-
agreed with them.  

I Was Wrong
These users were willing to admit that they, and not the
problem, were wrong. Most pointed out the component
of the problem they failed to grasp, namely that the
quantity of fruit was different:

“Oh wow, never realized that the amount of fruit
varied.”  

“I noticed the coconut twist but didn’t notice that
there was one banana.”  

Some enjoyed being wrong: “Totally got me. That was
fun!” While others were appreciative: “Yeah, I thought
the answer was 16 too. I saw this puzzle on a social net-
work, but because it was so easy, I didn’t even look at
the solution. Now I see things I never noticed before.”
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Ultimately, these users were identified as having a
growth mathematical mindset: they were confident
enough in their mathematical ability to the extent that
this single mathematical problem did not threaten their
intelligence, behavior characteristic of the mastery-ori-
ented response to failure. Furthermore, their discourse
was indicative of a mathematical identity comfortable
with the position of spectator; these users positioned
themselves as bystanders to a grand mathematical de-
bate. They played a neutral role in the narrative, neither
asserting themselves as above nor below another user.   

I Am Not Smart
These users not only willingly admitted they were wrong
but were self-denigrating in the process, depicting a
clear loss of self-worth. In addition to lamenting their
low intellectual ability, “Why am I so dumb?”, they
showcased their arithmetic errors in a disparaging tone:
“lol I thought 18-10 was 9, so smart.” One particular user
volunteered two different answers in two different com-
ments and surrendered in a third comment: “Well screw
that.” Another user went so far as to explain their rea-
soning in a relatively lengthy post, only to conclude with
“I’m gonna get this wrong anyway.”  

Ultimately, these users were identified as having a
fixed mathematical mindset: their self-identification as
“dumb” suggests their subscription to the belief that per-
formance is indicative of intelligence. Furthermore, their
discourse was emblematic of a mathematical identity de-
pendent on a position of inferiority. These users lacked
faith in their mathematical skills, demonstrating discom-
fort in mathematical socialization and suggesting an
abundance of non-mathematical identities. Not only did
they assert their low normative comparison to others,
but they desired to maintain it, thereby enforcing the su-
perior position of others.

Let Me Explain My Reasoning
These users offered insight to the problem in a markedly
non-disparaging way:

“It is a really simple problem; however, most peo-
ple did not know that the final answer had to con-
sider the change in quantity of each fruit.”

“The problem people have is they keep changing
it to variables. It is pictures of fruit, not letters rep-
resenting numbers.”

Some even explained the solution using real-life scenarios:

“You go to a shop and see packs of bananas at a
discount. 1 pack = 1 euro. You notice that a few of
the packs contain just 3 bananas while most packs
contain 4. Would you buy the 3-pack??? My point
is: we can never afford to dismiss the importance
of attention to detail.”

They even demonstrated positive growth interpretations
from past failures: “I have learned to look a little closer
in these things.” 

Ultimately, these users were identified as having a
growth mathematical mindset: they made effort attribu-
tions in their constructive criticism of other users’ ap-
proach to solve the problem. Furthermore, their discourse
indicated a mathematical identity emblematic of instruc-
tor and solidarity with others; they exhibited both an in-
tent to encourage learning in other users and solidarity
in their understanding of how others had failed.  Distinct
from a position of authority in which the desire was to
exert power and control over others, these users ex-
pressed a desire to rectify others’ mistakes.  

Other
All other comments were categorized as “other.” Most
of these comments consisted of single-number solutions
to the mathematics problem. These users demonstrated
a clear lack of desire to engage in discourse with others.
Due to the ambiguity of motive and lack of sufficient
verbiage, it is not possible to determine the mathematical
mindset of these users. With that being said, their disin-
terest is indicative of a mathematical identity dependent
on a position of relative indifference.

Results

Of the 1046 comments, the following mathematical iden-
tities were revealed through discourse: 170 (16.3%) wrote
from a position of superiority; 135 (12.9%) from a posi-
tion of authority/power; 41 (3.9%) from a position of
spectator; 7 (0.7%) from a position of inferiority; 34
(3.3%) from a position of instructor/solidarity; and 659
(63%) from a position of indifference. Additionally, 312
(30%) used discourse suggestive of the fixed mathemat-
ical mindset, whereas only 75 (7.2%) of comments were
indicative of the growth mathematical mindset.  
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Discussion

Social media discourse is presently understudied. Extant
studies have demonstrated the importance of fostering
productive mathematical mindsets and mathematical
identities and the integral role that discourse (e.g., class-
room, parent to child) plays in their development and
progression; however, social media discourse is vastly
different from most conventional forms. First, mathe-
matics problems on social media generate controversy.
Their portrayal as puzzles only geniuses can solve natu-
rally incites competition. Second, the absence of an an-
swer, or even a collective dismissal of the perceived
answer, leads to heated disputes. In fact, authority on so-
cial media is sometimes denigrated as opinion. Third,
the unfiltered discourse surrounding these posts encour-
ages an unbridled comment culture exemplified by the
uninhibited and audacious criticism of others. Fourth,
social media discourse is primarily written, limiting
users to modern written language indicators of expres-
sion. Finally, social media generates a larger, more di-
verse community than that typically studied. It allows
for a unique forum of mathematical discourse that inten-
sifies as the post grows in popularity. Therefore, it is im-
portant to examine how social media discourse
contributes to mathematical mindsets and mathematical
identities.

This study found discourse in social media to indicate
both mathematical mindset and mathematical identity;
furthermore, mathematical mindset and mathematical
identity were linked. The fixed mathematical mindset
corresponded to mathematical identities that positioned
the user as superior, inferior, or authoritative. This is un-
surprising, as the interest each of these users had in
ranking their mathematical ability and asserting their
relative comparison to others is typical of ability attribu-
tions and performance goals. In contrast, the growth

mathematical mindset corresponded to those mathemat-
ical identities that positioned the user as spectator or in-
structor/solidarity. Notably, these users made effort
attributions and showed complete disinterest in their
comparison to others, suggesting their mathematical
identities were more robust because they were unthreat-
ened by performance indicators. 

Social media can inspire confidence and engender
positive change; however, it is necessary to transform
harmful notions of efficacy in mathematics and false nar-
ratives of what it means to be a mathematician. Ar-
guably, those users that engaged in the most detrimental
discourse were those whose intellectual capacity and
normative comparison were threatened by their failure.
Positional acts are reciprocal; therefore, these users
played supportive roles in developing the mathematical
identities of others. It is only by understanding the inte-
gral role that mathematics socialization in various arenas
has in developing mathematical mindsets and mathemat-
ical identities that we can enhance mathematical learning
and encourage mathematical success.

Future studies should determine further the extent to
which mathematical mindsets and mathematical identi-
ties are related through positional actions in social media
discourse and if the same positioning acts are linked con-
sistently with the same mathematical mindsets. Future
studies should also explore how mathematical mindsets
and mathematical identities are expressed through po-
sitional actions of discourse on social media platforms
other than YouTube. Are certain mindsets and identities
more prevalent on certain sites? Does the language used
by users change as they switch between social media ap-
plications? How does student discourse in the classroom
relate to student discourse on the Internet, and which in-
dicates their true mathematical mindset and identity?

Additionally, it is important to understand that mind-
set and identity are multidimensional and should be 

Coded Comment
Associated 

Mathematical Mindset
Associated 

Mathematical Identity
Percentage

This is easy

This is not fair

I was wrong

I am not smart

Let me explain my reasoning

Other

Table 3

Results

Fixed

Fixed

Growth

Fixed

Growth

NA

Position of Superiority

Position of Authority/Power

Position of Spectator

Position of Inferiority

Position of Instructor/Solidarity

Position of Relative Indifference

16.3

12.9

  3.9

  0.7

  3.3

63.0
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examined on a spectrum. In fact, the development of
these two constructs is continuous and dynamic. There-
fore, interventions, such as those that promote healthier
mindsets and identities, can embolden learners to reach
higher levels of mathematical efficacy. With this knowl-
edge, educators can better equip themselves, and their
students, with those speech patterns that promote the
mathematical growth mindset and positive mathematical
identities. Furthermore, they should better prepare their
students to be resilient when engaging in mathematics
discourse on social media. Finally, they should be more
cognizant of the discourse being used outside the class-
room and its effects inside the classroom.  

A possible limitation to this study is the lack of de-
tailed analysis of the “other” category, which made up
for 63% of the comments. It is difficult to ascertain the
motive behind single-word discourse. Perhaps these
users were confident in their mathematical abilities to
solve the problem with no elaboration. Or maybe they
skipped to the end of the video and copied the answer,
thereby posting their solution to convince others that
they solved the problem. Alternatively, maybe they sim-
ply did not care, or maybe they cared just enough to let
people know they were “smart.” Regardless, their desire
to post yet not fully contribute to the discourse is similar
to the mathematical identity emblematic of spectator and
should be studied further.   

Another possible limitation of this study is the sub-
jective interpretation of the coding process. The re-
searcher ensured the validity of the coding process via
close reference to the tables of characterizations. How-
ever, without the context of tone from spoken language,
nonverbal cues, or further questioning by the researcher,
it is possible that comments could have been attributed
to different coded themes. Future studies should be con-
ducted which include inter-rater reliability. Addition-
ally, in cases where comments may align with more than
one coded theme, future studies should incorporate cod-
ing comments to more than one theme.  

Social media use is on the rise, and its growth has
sparked an evolution of, and dependence on, written dis-
course. Unfiltered and widely disseminated, it is impor-
tant to increase our understanding of the impact of social
media posts. Already, positive and negative health out-
comes have been reported from social media use. Thus, it
is increasingly crucial that educators recognize the effect
that social media interactions have on their students. 
Ultimately, this unique form of discourse can be used as
a conduit for mathematics success through its relation to
mathematical mindsets and mathematical identities. 
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Mathematics assessment in the postsecondary classroom
gathers information about student content knowledge
and their mathematics learning, provides students with
feedback on their learning, and helps teachers reflect and
improve their teaching practices (Suurtamm et al., 2016).
Strategies for mathematics assessments have remained
somewhat stagnant at the postsecondary level, with tra-
ditional, closed-book exams dominating the field (Ian-
none & Simpson, 2011, 2015). With an increasingly
diverse student body entering postsecondary mathemat-
ics courses, teachers have an obligation to accommodate
a variety of academic and professional needs. Incorpo-
rating alternative forms of assessment into a mathemat-
ics course can help teachers create a well-rounded
evaluation of students’ knowledge and skills. This paper
includes resources and strategies for three types of alter-
native mathematics assessments: (1) online, (2) oral, and
(3) project-based. Each section will define these alterna-
tive assessments in the context of a postsecondary math-
ematics classroom, provide specific research-based
resources for implementation and grading, and address
concerns about potential limitations. 

Online Assessments

Assessments must measure student comprehension of
learning objectives, provide students an opportunity to
self-assess, and cultivate a feedback dialogue between
teachers and students (Robles & Braathen, 2002). Online
mathematics assessments fulfill these requirements and
most aspects of traditional paper-and-pencil assessments.
Advances in technology allow for multiple choice,
true/false, matching, fill in the blank, free response, and
many other question types to be uploaded into a digital
format and instantly graded through the use of algo-
rithms (Herbet et al., 2019; Pelkola et al., 2018). Further,
many online assessment resources provide immediate
feedback to student responses (Joglar et al., 2010), and
some have the capability to generate personalized ques-
tions based on students’ progress (Herbert et al., 2019).
Online platforms for course management, learning, and
teaching, known as learning management programs, are also
equipped for teachers to build their online assessments
and then import students’ data into their grade books.
Most online assessments can support mathematics editing
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codes such as LaTeX and allow the teacher to insert inter-
active multimedia files from sources like GeoGebra and
Desmos (Joglar et al., 2010). Several online assessment
platforms allow teachers to share the resources they have
created, thereby constructing digital banks of mathemat-
ics assessment questions (Gleason, 2012; Joglar et al., 2010;
Pelkola et al., 2018). 

Online Assessment Resources
Many resources are available for instructors to create on-
line mathematics assessments. Bolster Academy, a
standalone program, specializes in open-ended ques-
tions for students taking advanced mathematics courses
at the postsecondary level with automated feedback and
shared question banks (2020). Maple T.A., or Möbius,
specializes in Science, Technology, Engineering, and
Mathematics (STEM) courses, offers a variety of question
types, automated feedback, and shared questions banks
(Maplesoft, 2020). Maple T.A. is compatible with most
learning management programs and also works as a
standalone program. Both Bolster Academy and Maple
T.A. are online programs that the teacher, students, or
institution must pay for a subscription; however, a num-
ber of open-source, freely distributed programs that
teachers can contribute to and modify to suit their needs
are available. Lumen OHM, also known as MyOpen-
Math, provides teachers with question banks in which
they can share and use questions designed for specific
mathematics content areas (IMathAS, 2020). MyOpen-
Math also automatically grades multiple choice, numer-
ical, and graphing solutions, providing students with
instant feedback (IMathAS, 2020). WebWork, supported
by the Mathematical Association of America and the Na-
tional Science Foundation, focuses on formative assess-
ment in the form of homework with automated feedback
and shared question banks (The Mathematical Associa-
tion of America, 2020). Teachers using Google Classroom
may also want to take advantage of Google Forms. While
not math specific, Google Forms allows teachers to man-
ually enter feedback and automatically generate a statis-
tical report of students’ responses. We created a more
detailed description of these online assessment resources
and their capabilities that can be found in Appendix A.

Teachers can also access online resources available
on their school’s learning management programs to 
create assessments. Some of the most commonly used
learning management programs such as Blackboard,
Brightspace, Canvas, Moodle, and Sakai have a variety
of question types that provide both automated and man-

ually entered feedback. Each of these systems generates
statistical reports of students’ performance incorporated
into the system’s grade book. It is important to note that
these programs are not explicitly designed for mathe-
matics assessments; instead, they are designed to be
comprehensive enough to permit use in a wide range of
disciplines. Advanced mathematics teachers and instruc-
tors may feel limited by the available built-in math edi-
tors, which often do not accommodate such things as
scientific notation, graphing, or diagrams. Teachers
could alternatively ask students to upload files or pic-
tures of their work to be manually graded.

Implementing and Grading Online Assessments
Initially, implementing an online mathematics assess-
ment will create some challenges for instructors, as we
will address in the next section. Teachers must become
familiar with the program’s format and design while
building a database of questions (Joglar et al., 2010).
However, paid programs like Maple T.A. or Bolster
Academy and open-source programs like MyOpenMath
and WebWork have mathematics question banks which
teachers can access for formatting examples or for incor-
porating directly into their assessments. Furthermore,
online mathematics programs like GeoGebra and Desmos
have open-source, pre-built models that can be embed-
ded into online assessment resources, thereby alleviating
the technological strain on teachers in building their own
models. We recommend that teachers search GeoGebra
and Desmos for specific diagrams, graphs, or models,
and then copy the embedding code and insert it into the
assessment system within their learning management
program. 

As noted above, most of the online assessment pro-
grams are able to incorporate most mathematics ques-
tions, excluding Free Response/Essay and File Upload, to be
automatically graded and provide instant student feed-
back. For example, in the learning management program
Canvas, teachers can select the point value of each ques-
tion and customize the type of feedback to include sim-
ple correct/incorrect hints, or further directions.
Blackboard, Brightspace, Canvas, Moodle, and Sakai
have built-in grade books which will automatically fill
in students’ data and create statistical reports for teacher
evaluation. Most online assessment programs also col-
lect student data; Lumen OHM, for instance, will calcu-
late students’ scores for assessments and course averages
that can be downloaded into an Excel spreadsheet. 

36 | ALYSSA L. MACMAHON, CHANDRA N. MONGROO



Potential Limitations to Online Assessments

Accessibility
There are limitations to the use of online mathematics
assessments as an alternative to traditional paper-and-
pencil assessment. Student and teacher accessibility to
computers and reliable Internet will pose the most for-
midable of challenges (Greenhow, 2015; Herbert et al.,
2019), with the potential to unintentionally discriminate
against those who do not have the resources to access
the online assessments. As the COVID-19 Pandemic has
forced schools around the world to move classes online,
this issue has been exacerbated, and teachers have found
that many students lack the resources necessary to par-
ticipate (Reilly, 2020). We recommend that teachers
gather information about students’ accessibility pri-
vately before implementing any mandatory online math-
ematics assessment. Teachers, alternatively, may choose
to implement mandatory assessments in school com-
puter labs to ensure accessibility for all students. 

Technological Skills 
Initially, the technological skills of both the teachers and
students may pose a potential limitation. Teachers and
students need time to become comfortable using these
online mathematics assessment tools and familiarize
themselves with the selected programs before using the
assessment in a high-stakes environment (Herbert et al.,
2019). Depending on the audience, it may be useful to
provide in-service training to help teachers become com-
fortable with online mathematics assessment programs
(Joglar, 2010).To facilitate effective student use of pro-
grams, Greenhow (2015) suggests mock online assess-
ments that allow students multiple attempts or an initial
assessment in a classroom setting with the teacher pres-
ent to address questions and issues in real time. 

Academic Dishonesty
Teachers’ apprehension over cheating and academic dis-
honesty is often heightened when considering online
mathematics assessment (Kennedy et al., 2000; La-
dyshewsky, 2015). Online question and answer websites,
such as Chegg.com, have enabled cheating, particularly
on mathematics assessments inclined towards single so-
lutions and numerical responses (Klein, 2020; Supiano,
2020). A number of ways to combat the risk of academic
dishonesty for online mathematics assessments include:
using the question-randomization option on assessment
tools, lowering the stakes of the assessment, scheduling
a time and setting a time limit for the assessment, or ask-
ing critical thinking questions instead of multiple choice
or true/false (Ladyshewsky, 2015). Randomized ques-

tions that have time limits reduce students’ ability to
share and search for answers online (Ladyshewsky,
2015). Harmon and Lambrinos’ (2008) study found fewer
instances of cheating when a proctor supervised the as-
sessment. While some schools may have the resources
to hold online assessments in computer testing centers
with proctors, this is not always an option, especially for
students taking courses online. Online assessment in-
tegrity resources such as Honorlock, ProcturU, and Proc-
torio provide teachers with secure online proctoring
software that monitors students virtually as they assess,
provide identity verification, and professional review for
signs of academic dishonesty. We recommend that
teachers ask their Information Technology Department
to see if this type of software is available from their on-
line campus. It is important to note that there has been
recent backlash to these integrity resources, with reports
of students’ feeling an invasion of privacy, increased
anxiety while testing, and a plethora of technological is-
sues (Patil & Bromwich, 2020). Teachers, alternatively,
may consider having students sign an honor pledge or
code, where they commit to honestly completing the as-
sessment. Honor codes have been found to reduce cheat-
ing and support integrity on assessments of all types
(Miller, 2020). 

Oral Assessments

Oral assessment in mathematics is not common in Amer-
ican classrooms, unlike countries such as Hungary, Italy,
and the Czech Republic who commonly employ this as-
sessment method in their higher education courses (Ian-
none & Simpson, 2012). Lee (1988) describes learning as
“more than a paper and pencil activity” (p.12), and oral
assessments provide a space for students to show off
their “problem solving skills rather than quick answers”
(Sayre, 2014, p.30). Oral assessments help develop stu-
dents’ communication and logical reasoning skills
(Chasteen, 2018; Iannone & Simpson, 2011; Joughin,
2010). Moreover, oral assessment in mathematics can
significantly reduce, if not eradicate, cheating, and pla-
giarism among students (Joughin, 1998, as cited in Ian-
none & Simpson, 2011).

Joughin (2010) categorizes oral assessments into three
types: presentation, application, and interrogation. In the
postsecondary mathematics setting, the two most preva-
lent forms of assessment from Joughin’s (2010) model
are presentation and interrogation. Presentations are char-
acterized as an “in-class presentation on a prepared topic
[or a] group project report to the class” (Joughin, 2010,
p. 3). Interrogations are described as the process where a
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student is quizzed or interviewed by the instructor
(Joughin, 2010); we will primarily be discussing oral as-
sessment in mathematics as an interrogation. 

Setting the Stage for Oral Assessment 
in Mathematics
An instructor wishing to implement an oral assessment
in mathematics needs to consider the classroom setting,
which will dictate such an endeavor’s plausibility. Re-
searchers most commonly execute and study the effec-
tiveness of oral assessments in small classroom settings
(Iannone & Simpson, 2012; Odafe, 2006; Sayer, 2014),
suggesting that a smaller classroom’s intimacy cultivates
a more suitable environment. Furthermore, the instruc-
tor needs to thoroughly plan for the assessment, asking
themselves about the types of interactions and questions
needed to properly assess students’ mathematical
knowledge, who the audience will be, and how to struc-
ture the assessment (Joughin, 2010). To reduce ambigu-
ity and confusion for students, it is recommended to
discuss the oral assessment format and expectations be-
forehand and provide written directions (Iannone &
Simpson, 2012; Joughin, 2010). Practitioners suggest im-
plementing practice oral quizzes and providing detailed
one-on-one feedback to help familiarize students with
the assessment process (Dumbaugh, 2020; Iannone &
Simpson, 2012). Moreover, a comprehensive rubric of
how students will be graded should be available prior
to being assessed (Odafe, 2006), with the assessment’s
intentions clearly stated as a high or low stakes test (Ian-
none & Simpson, 2012). 

Implementation of Oral Assessments
In mathematics, oral assessments are generally admin-
istered in two ways: group oral assessment with three to
four students (Odafe, 2006) or individualized oral assess-
ment (Boedigheimer et al., 2015; Iannone & Simpson,
2012). These types of assessments are recommended to
be held outside of regular class time and should not ex-
ceed more than 60 minutes (Chasteen, 2018; Iannone &
Simpson, 2012; Odafe, 2006; Sayre, 2014). Instructors
may also choose to employ teaching or course assistants
to increase the efficiency of administering oral assess-
ment; however, this is only recommended for use in
practice or in a low-stakes environment (Chasteen, 2018).
The assessment should feature “harder, more interesting
problems than…a written exam” (Sayre, 2014, p. 32) and
should be both thought-provoking and not invite one-
word numerical answers. 

Group Oral Assessments
In a group oral assessment setting, it is important to have
students accustomed to collaborating on mathematics
problems in groups (Chasteen, 2018; Odafe, 2006). We
recommend that teachers create groups of three to four
students. In Odafe’s (2006) example, students were as-
sessed with the same group they were assigned to dur-
ing class time and were provided with space, such as a
whiteboard, to express mathematical ideas in written
format. Some researchers recommend that scripted ques-
tions be pulled randomly from a collection created by
the instructor in advance (Chasteen, 2018; Odafe, 2006).
Teachers should work to create a dialogue with students
as they are being assessed, asking such questions such
as “Why did you do that?”, “Can you explain an alter-
nate way of solving the problem?” and allowing group
members to assist each other when necessary (Lee, 1988;
Odafe, 2006). The amount of time allotted for each group
will vary depending on the length and difficulty of the
questions. For example, Odafe’s (2006) study of group
oral assessments in a College Algebra course allotted ap-
proximately 30 minutes for each group, allowing stu-
dents to complete two to three problems. Chasteen’s
(2018) Calculus courses allotted for up to an hour for
each group. 

Individual Oral Assessments
Current research indicates that 10-30-minute interview
sessions are sufficient to assess individual students’ un-
derstanding of mathematics topics (Boedigheimer et al.,
2015; Dumbaugh, 2020; Iannone & Simpson, 2012). In
Iannone and Simpson’s (2012) study, students were
tested on two questions: one in theoretical and one in ap-
plied mathematics. The student was allowed to choose
the first question from either category and respond. The
tutor would then randomly select a question from the
other category for the student to respond to (Iannone &
Simpson, 2012). When posing theoretical mathematics
questions, research suggests that keywords such as
prove, explain, and draw can be used to elicit responses
that demonstrate students’ reasoning and understand-
ing (Chasteen, 2018; Iannone & Simpson, 2012). Applied
mathematics questions in an oral assessment should ask
students to implement algorithms to solve problems in
front of the instructor as they talk through their thought
process (Iannone & Simpson, 2012). Sayre (2014) sug-
gests that students should not perform tedious calcula-
tions of a problem; instead, the instructor should guide
the student to focus on the content and reasoning behind
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the problem. Odafe (2006) further recommends that in-
structors incorporate ample wait time for student re-
sponses, and, at the conclusion of an oral assessment,
address misconceptions or mistakes made. 

Grading Oral Assessments
Grading oral mathematics assessments requires several
components to facilitate a fair and equitable process.
Firstly, a clear rubric that rates students on their solu-
tion(s), the communicated ideas and application while
problem solving orally, and the clarity of their explana-
tions (Boedigheimer et al., 2015; Iannone & Simpson,
2012;). Students can also be rated on how far they can
carry the question through, with or without varying lev-
els of assistance (Odafe, 2006; Sayre, 2014). It is recom-
mended that instructors, either video or audio record the
sessions for review or in the case of an appeal (Iannone
& Simpson, 2015; Joughin, 2010). Teachers are advised
to administer grades only after notes, comments, and
recordings have been reviewed (Odafe, 2006).

Potential Limitations to Oral Assessments

Assessor Bias                                                           
One of the major concerns for oral assessment in math-
ematics is fairness and the mitigation of assessor bias
(Iannone & Simpson, 2012; Joughin, 2010; Sayre, 2014).
In addition to clearly communicated expectations, Sayre
(2014) recommends postponing grading until all stu-
dents have completed the oral examination to address
grading fairness. While assessor bias, intentional or un-
intentional, may be somewhat unavoidable, the use of
video or audio recording allows for “ways of subse-
quently monitoring the process and moderating for the
marks” (Iannone & Simpson, 2012, p. 180). To minimize
assessor bias, courses with multiple teachers may also
randomly assign students to be assessed by instructors
of other sections (Boedigheimer et al., 2015).

Stress and Anxiety
Another limitation found with oral assessment in math-
ematics is the high levels of stress or anxiety students
can experience while testing (Iannone & Simpson, 2012;
Joughin, 2010). Iannone (2020) found that student nerv-
ousness arises from two factors: (1) interacting with the
instructor as they are taking their assessment, and (2) the
unpredictability of the questions posed. To mitigate the
first factor, Iannone (2020) found that consistent dia-
logue with students in the classroom made students
more comfortable with the instructor. For the second fac-
tor, Odafe (2006) provides students with a pool of ten
questions from which the oral exam will be composed

one week prior to the examination. Alternatively, other
research has found that oral assessments may benefit
students who find themselves suffering from math anx-
iety associated with written examinations (Heath, 1994).
Some students, such as those with dyslexia or vision im-
pairments, may find expressing their thinking and un-
derstanding of mathematics concepts orally less stressful
(Joughin, 2010).

Time Consumption
Time consumption for the administration of oral exam-
inations can often seem daunting to practitioners
(Joughin, 2010; Odafe, 2006). Large class sizes can create
a barrier due to the time constraints for both teachers
and students (Boedigheimer et al., 2015; Joughin, 2010),
particularly if scheduling assessment outside of class
time. Sayer (2014) recommends that instructors consider
the class size before choosing oral assessments as an al-
ternative, noting that she will not use oral exams in
classes much larger than 25 students. 

Student Needs
Lastly, it is important to acknowledge that oral assess-
ment in mathematics may not be suitable for all learners.
Some students may have hearing or speech impairments
that would make oral examinations discriminatory
(Joughin, 2010); others may not be experienced at ex-
plaining their reasoning or thinking on-the-spot (Odafe,
2006). Also, international students may not be proficient
in the language that oral assessment is conducted, once
again making the assessment unintentionally discrimi-
natory. The instructor needs to consider these limitations
and make adjustments accordingly. 

Project-Based Assessments

Project-based learning (PjBL), to demonstrate real-life
applications, made its debut in the early 1900s in the
United States (Barron et al., 1998). PjBL “is a comprehen-
sive approach to classroom teaching and learning that is
designed to engage students in the investigation of au-
thentic problems” (Blumenfeld et al., 1991, p. 379). While
project-based assessments (PjBA) are generally used in
classrooms that teach with PjBL, they are versatile
enough to be a part of any mathematics course. Helle et
al. (2006) describe PjBA and PjBL as having five essential
features: (1) the problem drives the investigation, (2) stu-
dents construct a concrete product, (3) students are in
control of their learning process, (4) the problems and
solutions are contextual and challenging, and (5) stu-
dents can represent their solutions in multiple formats. 
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The use of PjBA has been praised as a type of authen-
tic assessment, that serves as a method of evaluation
while continuing student learning through providing
opportunities for “meaningful experiences … [and] …
high-level thinking” (Fauziah, 2018, p. 1). Given the in-
vestigative nature of PjBA (Blumenfeld et al., 1991), they
are excellent platforms for students to apply their math-
ematical content knowledge while exercising critical
thinking skills in both mathematics and project design
(Helle et al., 2006). PjBA in mathematics encourages stu-
dents to engage in problem-solving, perform experi-
ments, analyze data, or create presentations (Blumenfeld
et al., 1991; Russell & Rowlett, 2019). PjBL ensures that
students overcome misconceptions that could easily be
overlooked in traditional learning environments (Helle
et al., 2006). PjBA can also be a tool that integrates the
fields of STEM, helping students to recognize and apply
the relationships between disciplines (Han et al., 2016).
Furthermore, traditional academic skills students ac-
quire in typical undergraduate mathematics programs
are not always employable. Researchers (Hibberd, 2005;
Knight & Yorke; 2004, as cited in Russell & Rowlett,
2019) claim PjBL and PjBA can build on desirable pro-
fessional skills (Hibberd, 2005), such as how to collabo-
rate in a professional group setting while improving
planning and organizational skills (Russell & Rowlett,
2019). Similar to oral assessments in mathematics, PjBA
will require careful planning and clear communication
of expectations to students. 

Types of Project-Based Assessments
The versatility of PjBA means it can take on many dif-
ferent forms, such as portfolio projects, academic papers,
or presentations. Portfolios consist of a collection of
high-quality student work throughout a course that
highlights their mathematical explorations and abilities
(Knoerr & McDonald, 1999). Portfolios provide students
with an opportunity “to take an active role in their own
assessment and progress toward completing course ob-
jectives” as well as to “present a full assessment of learn-
ing” (Burks, 2010, p. 455-457). In academic mathematical
papers, students research a topic applicable to the con-
tent of the mathematics course and write about it in their
own words (Keith, 1988). Crannell (1999) promotes aca-
demic papers as a way: “(1) to improve students’ math-
ematical exposition; (2) to introduce new mathematics;
(3) to strengthen understanding of previously encoun-
tered mathematics; and (4) to provide feedback from the
student to the instructor” (p. 113). Lastly, presentations
can be live or video recordings of students’ work on a
mathematical problem, explanation of a mathematics

theory or concept, or application of mathematics to con-
duct an experiment.

Implementation of Project-Based Assessments
When implementing PjBA in a mathematics course,
there needs to be a transitional phase that gives students
opportunities to learn about the processes of PjBL and
engage in initial low-stakes assessments (Blum, 1999;
Slough & Milam, 2013). Instructional strategies such as
scaffolding each step in a PjBA, modeling with exem-
plars of different parts of a PjBA, and encouraging per-
severance will help students to transition to this new
style of assessment (Barron et al., 1998; Slough & Milam,
2013). Teachers should assume an advisory or facilitator
role rather than an authoritarian role (Adderley et al.,
1975, as cited in Helle et al., 2006). Moreover, Slough and
Milam (2013) recommend that during the PjBA process,
teachers ensure: (1) content is made accessible to stu-
dents, (2) the thinking process is visible, “which includes
visual elements to help the learner and using learner
constructed visual elements to assess learning” (p.16),
(3) students are encouraged to learn from each other,
and (4) the PjBA is focused on “autonomy and lifelong
learning” (p. 16). Students will need to become accus-
tomed to working together, communicating mathematical
ideas, giving and receiving feedback, and unders tanding
how to create a product in a timely and organized fashion.
As PjBA ordinarily occurs within a group setting, in-
structors are encouraged to have students select roles,
draft the goals and ground rules, or even establish coop-
eration agreements (Capraro & Corlu, 2013; Morgan &
Slough, 2013) (see Personal Accountability). As with the
case with oral assessments, students should be familiar
with how they will be assessed at the beginning of a
PjBA, provided with rubrics, prompts, and checklists. 

Grading Project-Based Assessments

Rubrics and Checklists
In PjBA, “rubrics are an essential component … that
serve different purposes for those who are involved in
the assessment process both at the stage of the rubric’s
development and its utilization during the evaluation”
(Capraro & Corlu, 2013, p.115). To promote deeper un-
derstanding and involvement of the assessment process,
researchers (Capraro & Corlu, 2013; GAIMME, 2016) en-
courage teachers to allow students to be a part of the
rubric design process and then use these rubrics as tools
for self- and peer-assessment. Capraro and colleagues
(2013) include rubric categories such as authenticity, ac-
ademic rigor, exploration and independent research, use
of technology, and application and demonstration of
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learning. Checklists can also serve as a scaffolding tool
for students and teachers, providing guidance on for-
matting and important components for completing PjBA
(GAIMME, 2016). Checklists should be catered to the
type of PjBA and include such items as how to structure
a speech or advice on time management (Doree, 2017). 

Personal Accountability
In group PjBA, students will need to be assessed both in-
dividually and as a group. Capraro and Corlu (2013)
suggest that teachers use peer assessments, student re-
flections, group contracts, or an additional individual as-
sessment to help increase individual accountability and
fairness. Peer assessments either direct students to use
the predetermined rubric(s) to assess each other or em-
ploy a Likert survey of teammates’ contributions. In
PjBA, students prefer to “demonstrate what they know
instead of being caught at what they don’t know” (Ken-
schaft, 1999, p.133). Teachers can provide space to
demonstrate this knowledge through student reflections
in the form of a survey or essay to include an account of
personal responsibility and contribution to the project,
in addition to a self-assessment using an agreed-upon
rubric. Group contracts can include items related to be-
havior and social interactions in the group, responsibil-
ities for each member, and consequences for negative
actions (Capraro & Corlu, 2013). The combination of
these documents, with the rubric(s) or checklist(s), can
then be used to create a weighted grading system that
will evaluate the whole process of the PjBA. 

Potential Limitations to Project-Based 
Assessment

Time and Class Size Constraints
PjBA provides a versatile platform for mathematics as-
sessment that builds on students’ ability to problem
solve and encourages student-centered learning through-
out the process; there are a number of potential limita-
tions. Most notable is the constraint of time; PjBA is a
process that will take more than one class period to com-
plete and often requires students to collaborate outside of
class (Morgan et al., 2013). In addition to providing time
for students to work on the project during class, more
time will be required should teachers include presenta-
tions of projects as part of the assessment. Teachers should
also consider the time they will need to grade PjBAs. It
may require a more in-depth analysis of items submitted
by the students; however, the use of comprehensive
rubrics and clear expectations can simplify grading.

As with oral assessments, large class sizes pose a lim-
itation to PjBA. It may be challenging for the teacher to
guide and monitor students throughout the whole
process. In such cases, it is recommended that the
teacher use group-based PjBA and seek out “peer facili-
tators” that can help to supervise students (Ö̈zel, 2013). 

Plagiarism
Unlike online and oral assessments in mathematics, PjBA
is more susceptible to plagiarism (Johnson, 1983). Stu-
dents may unintentionally plagiarize using ideas or con-
tent from the Internet without proper citation, or
intentionally, by looking up solutions to problems. Unin-
tentional plagiarism can primarily be mitigated by using
explicit guidance on when and how to cite sources. Inten-
tional plagiarism can be reduced by using original prob-
lems posed by the teacher or selected by the students.

Lack of Prior Knowledge and Skills
Lastly, PjBA may pose initial challenges to students, who
may not have the prior knowledge or skills necessary to
implement a PjBA all on their own (Capraro & Jones,
2013). Skills will differ from student to student, and
teachers will need to consider this varying level of expe-
rience prior to engaging in a high-stakes assessment
(Capraro & Corlu, 2013). Researchers suggest the use of
scaffolding to include coaching students through a proj-
ect or modeling the expected outcomes of the PjBA
(Slough & Milman, 2013). The use of instructional strate-
gies mentioned in the implementation section, along
with time and experience, will temper these challenges
with PjBL and PjBA. 

Conclusion

The use of alternative forms of assessment in postsec-
ondary mathematics classrooms provides diverse stu-
dent populations multiple opportunities to showcase
their strengths and abilities. Online mathematics assess-
ments increase accessibility to both formative and sum-
mative forms of assessment while providing reusable
resources for teachers that are both academically chal-
lenging and efficient at data collection and analysis. Oral
assessments provide an authentic portrayal of students’
understanding and knowledge of mathematical content
while building communication and problem-solving
skills. PjBA facilitates high-level thinking of real-world
problems that develop students’ professional skills.

MATHEMATICS ASSESSMENT AT THE POSTSECONDARY LEVEL: THREE ALTERNATIVE FORMS OF ASSESSMENT | 41



We found it important to mention that during the
COVID-19 Pandemic, teachers may modify these forms
of alternative mathematics assessments to suit the needs
of students in online or hybrid classrooms. We recom-
mend that teachers continue to follow the above research
for implementing, grading, and addressing potential lim-
itations of alternative mathematics assessments. Teachers
may also want to consider increasing the use of low-stakes,
formative, online assessments to gauge student under-
standing during distance learning using the resources
noted in Appendix A. Oral mathematics assessments can
be administered using a video-conferencing medium,
where teachers provide a digital whiteboard for students.
Most PjBAs can be submitted digitally, and teachers can
use video-conferencing mediums to conduct live presen-
tations. Teachers may also want to consider asking stu-
dents to create pre-recorded presentations to submit as
part of their PjBA; these can then be shared through a dis-
cussion board on a learning management program or
played during class. 

Although this is not an exhaustive list of alternative
forms of assessment, this paper was designed with the
intention that postsecondary teachers and instructors
will implement these or other alternative forms of assess-
ment in their classrooms. We hope that these resources
and ideas will help teachers become more flexible and
innovative in their assessment strategies in a variety of
postsecondary classroom settings. Teachers are encour-
aged to use their professional experience and judgment
to decide how to most effectively use these assessment
tools to elicit authentic assessment of student learning.
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Standalone                                                x                           x                           x                           x                           x

Blackboard                                                                            x                           x                           x                            

Brightspace                                                                          x                           x                           x                            

Canvas                                                                                  x                           x                           x                            

Moodle                                                                                  x                           x                           x                           x

Sakai                                                                                     x                                                        x                            

Other                                               LTI Integration                                   LTI Integration                                               

Questions Types

Calculated                                                 x                                                       x                                                         

Equation/ Expression                                 x                                                       x                           x                           x

Fill in the blank                                           x                                                                                    x                           x

Free response/ Essay                                                            x                           x                           x                           x

Graph sketching                                                                                                 x                           x                            

Matching                                                                                                            x                           x                            

Multiple choice                                                                      x                           x                           x                            

Multi-part                                                                                                            x                                                         

Numerical                                                  x                                                       x                           x                            

Assessment Type

Math Specific                                            x                                                       x                           x                           x

Formative                                                  x                           x                           x                           x                           x

Summative                                                x                           x                                                        x                            

Feedback

Instant                                                       x                                                       x                           x                           x

Computer generated                                 x                                                       x                           x                           x

Manually entered                                                                   x                           x                                                         

Other

Generates statistical report                        x                           x                           x                           x                           x

Question Bank                                          x                                                       x                           x                           x

Accessibility                                            Paid              Open-Source        Open-Source               Paid               Open-Source

Table A

Online Mathematics Assessment Resources

Resource
Bolster 
Academy,
SOWISO

Google Forms Lumen OHM
MyOpenMath

Maple T.A.,
Möbius

WebWork MAA

Appendix A

Compatibility
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Introduction

The current emphasis on modeling within the Common
Core State Standards encourages students to engage in
mathematical thinking by creating a model and learning
from the mechanics of the model simultaneously (CCSSI,
2010). In doing this, students are actively discovering,
learning, and applying relevant mathematics to the
model they are creating. Additionally, this provides
them with opportunities to develop problem-solving
skills that are applicable outside of the mathematics
classroom.

Bringing mathematical design thinking into the class-
room through design tasks, similar to those in Project
Lead the Way (2017), provides opportunities for students
to engage with mathematics in a unique way. In these
situations, students have the autonomy to learn and do
mathematics in ways that make sense to them. Dynamic
Geometry Software (DGS) provides an interface for stu-
dents to engage with and mathematize real-world situ-
ations. Such technology can help students represent and
model natural phenomena while making the mathemat-
ical concepts an explicit focal point. Technology also pro-
motes mathematical habits of mind and normalizes
productive struggle. 

In this classroom study, I sought to understand better
how students engage in mathematical design thinking
and how teachers can best support students to engage
in this type of thinking. I repurposed an artistic logo de-
sign task to incorporate geometric transformations to en-
courage geometry students to mathematize the task
within DGS. In this way, they would naturally engage
in the design process by applying the relevant mathe-
matical concepts they have learned. As a result, all stu-
dents actively engaged in mathematical design thinking
to create their unique logos, each demonstrating varying
levels of awareness of the design process.

Review of Related Literature

Mathematical Design Thinking
The Common Core Standards for Mathematical Practice
(SMP) have brought increased attention to problem 
solving and mathematical modeling across the K-12 cur-
riculum (CCSSI, 2010). The SMP explicitly mentions
modeling, perseverance, and reasoning; these three ac-
tions fall within the construct of mathematical design
thinking, and, more generally, what is known as mathe-
matical knowing in action (Schön, 1992). Additionally, 

ABSTRACT This classroom study immersed high school geometry students in the creative and
intellectually challenging design task of developing unique logos using mathematics and
technology. The students applied and deepened their knowledge of transformations while using
dynamic geometry software. One of the main aims of the task was to elevate student creativity and
autonomy within the mathematics classroom while they engaged in mathematical design thinking
to create their logos. The discussion provides insight into considering student work from a design
perspective, which can offer students new ways to engage with mathematical concepts and make
their thinking more explicit.  

KEYWORDS mathematical design thinking, logo design, modeling, prototyping, technology, geometry 
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implementing strategies that intentionally bring design
thinking into the mathematics classroom can positively
impact how students approach rigorous problems (Chin
et al., 2019).

Design thinking is defined as a type of knowing in ac-
tion characterized by a constant interplay between the
design and the designer’s thinking about the design
(Schön, 1992). In this model, each depends on the other,
and it is not possible to separate the actions within the
space from the ways of knowing. Adapting Dym et al.’s
(2005) definition of engineering design to mathematical
design, mathematical designers generate, evaluate, and
articulate mathematical concepts or processes. In doing
this, the designers attend to human objectives while
abiding by the constraints of the situation to which the
design will be applied. The term situation includes in-
stances where a problem is being solved and where one
has not been posed. 

Incorporating mathematical design thinking into the
classroom can help students become stronger problem
solvers and bring lower-achieving students to a level equal
to their average-achieving peers (Chin et al., 2019). Design
tasks give students the autonomy to explore, create, and
do mathematics at the highest level (Smith & Stein, 1998).
Consequently, students can apply and develop mathemat-
ical concepts within a context that is driven by their inter-
ests in relation to the task’s requirements.

Principles Guiding Mathematical Design 
Thinking in the Classroom
While developing a task to engage students in mathe-
matical design thinking, teachers must carefully consider
their objectives and support students as they engage
with this type of thinking. Kolko’s (2015) principles of
design thinking serve as a guiding framework for design-
ing and implementing rigorous mathematical design
thinking tasks within the classroom. These principles are:

1.   Create models to examine complex problems.
2.   Use prototypes to explore potential solutions.
3.   Focus on users’ experiences, especially their 

emotional ones.
4.   Tolerate failure.
5.   Exhibit thoughtful restraint.

(Kolko, 2015, p. 68 – 69)

Modeling. Modeling is a way to visualize situations and
explore the facets and constraints of a problem, also
known as the problem space (Kolko, 2015). In contrast,
Kolko (2015) distinguishes prototyping as exploring and
experimenting within a problem’s solution space. While
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engaging in design thinking, students can use modeling
to help them understand and represent the problem or
task in ways that make sense to them, then use prototyp-
ing to develop solutions to the task. In K-12 mathematics,
students regularly create models to represent the prob-
lem space so they can set up and perform a brief calcu-
lation to arrive at a teacher’s anticipated answer. In this
context, students are engaging in basic modeling but
never reach the prototyping stage of design thinking.

Prototyping. Prototyping provides students a creative
space where they have the autonomy to develop one or
more unspecified solutions to a problem or task; stu-
dents assume responsibility for determining the appro-
priateness and effectiveness of these solutions based on
the criterion they develop. Prototyping is a nonlinear
process marked by student engagement in cycles of de-
sign and validation (Fountain, 1990). By discussing pro-
totyping as a cyclic process, we can classify students’
actions within these cycles to allow both students and
teachers to identify and emphasize the significance of
these actions. Rothenberg (1990) explains that students
can engage in prototyping with the intent to generate
and explore ideas (generative prototyping) or to determine
what aspects of their prototype are meeting their expec-
tations and goals (evaluative prototyping). Fountain (1990)
classifies the prototypes that students develop but later
discard as throwaway prototypes, whereas those that stu-
dents develop and then modify as evolutionary prototypes.
These terms are referenced later in the discussion of the
task.

Student’s Experiences. A safe classroom environment is
essential to the success of mathematical design thinking
tasks. Mathematics classrooms need to be places where
students are comfortable taking risks and sharing novel
ideas so they can embrace the freedom, challenges, and
unknowns that occur during mathematical design think-
ing. Rough draft talk, defined by Jansen et al. (2017), pro-
vides students a space to share in-progress thoughts and
ideas without the stress of evaluation. Teachers can en-
gage students in rough draft talk by acknowledging 
and honoring their mathematical work and emotional
experiences with mathematics at all stages of the design
process. In addition, teachers can seek to understand a
student’s work from the student’s perspective without
imparting their perspective by practicing what is known
as mathematical empathy (Araki, 2015). Rough draft 
talk and mathematical empathy normalize the nonlin-
earity of learning and elevate the design process over the 
product.



The design task was crafted to engage students in
mathematical design thinking, primarily prototyping.
The entire task spanned three consecutive class periods,
each of which were forty-nine minutes long. On the first
day of the project, the students and I examined transfor-
mations in existing logos before they were given time to
work on their own. Some students requested to use ex-
isting logos; this request was granted with the condition
that they needed to modify the existing logo in some
meaningful way. The students continued their work on
the second day and submitted their work by the end of
the day. Their submission included the logos and an ac-
companying handout where they discussed the trans-
formations they used and how they engaged with the
design process. On the third day, the students gave short
presentations of their logos to their peers.

Implementation
The logo design task challenged students to blend cre-
ativity with problem solving while also requiring them
to apply mathematical knowledge of transformations to
their design. I provided them with the autonomy to
choose the transformations they applied to make their
desired logo. Throughout the task, the students were
challenged to combine their understanding of geometric
transformations with a working knowledge of the Ge-
oGebra software. The short timeline required students
to monitor their progress while balancing their ambi-
tions and the associated risk. 

I spoke with students to uncover how they were mak-
ing sense of the task, using technology strategically, and
persevering through the task. My aim was to understand
their thought processes as they engaged with the task in
relation to the components of mathematical design
thinking and the SMP (CCSSI, 2010). However, it can be
difficult to capture a student’s mathematical knowing in

Risk Taking. Finally, students engaged in mathematical
design thinking must manage the complexity of their
preferred designs with the risks that are required to pur-
sue and create these designs (Kolko, 2015). In the task
described here, students who designed an entirely new
logo took more risk than those who decided to recreate
and modify an existing logo; those working with com-
plex logos risked not having the time to finish their de-
signs. Each student had to find a balance between
complexity and the associated risk. 

In determining how to apply mathematics in a new
way to make their logo, the students can be seen as
“doing mathematics” as defined by Smith and Stein
(1998). They explain that these high-level tasks free stu-
dents from the limitations of finding a solution and pro-
vide opportunities to engage with and discover
mathematics while exploring the solution spaces to
problems. At the same time, Smith and Stein (1998) also
discuss that students may find themselves experiencing
some level of anxiety “due to the unpredictable nature
of the solution process” (p. 348). By acknowledging and
normalizing the risks and anxieties that some students
experience while engaging in design tasks, teachers can
support students in managing risk and ambition
throughout the task. 

Context and Task Details

Classroom Context
A total of twenty-one high school geometry students en-
gaged in this mathematical design task by constructing
a logo in DGS using geometric transformations. I began
with the expectation that students had some prerequisite
knowledge of geometric transformations since they
learned how to recognize, represent, and perform trans-
lations, reflections, rotations, and dilations earlier that
year. We reviewed these concepts immediately prior to
the task during a two-day introduction where students
also learned to navigate GeoGebra, the DGS they would
be using. It was important for students to explore the
software and familiarize themselves with various tools,
including how to perform each type of transformation
needed for the design task. 

Design Task
I provided the instructions shown in Figure 1 for the logo
design task. Students accessed the materials for the task
(i.e., instructions, a reflection handout, and assessment
rubrics) on a Google Classroom webpage. The instruc-
tions for the task are in Figure 1.

Figure 1

Logo Design Task

Design your logo using transformations in GeoGebra. 

This is a time for your creative side to shine! Consider
what your logo will represent. If you are not sure where
to start, consider making a new logo for your favorite
brand of shoes, clothes, fast food, etc. Bring it to life
with color and design!

Your logo needs to:

1.  Represent a company, activity, program, brand, 
or something else.

2.  Use at least two transformations.
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action. Students are not always fully aware of or able to
articulate their thinking because it is a compilation of the
many small and often unconscious decisions they make
while engaging in design. Therefore, in an attempt to
make their mathematical knowing in action more ex-
plicit, I asked students to record their design process and
any discoveries they made on paper. This provided me
with insight into their thinking and served as a guide for
students when they presented their logo to their peers
on the third day. 

Throughout the three days, I ensured the focus was
on students’ ideas and work. To do this, I monitored stu-
dent progress and generated and maintained discourse
with students about their work, primarily by engaging
the students in rough draft talk (Jansen et al., 2017). I was
intentional in allowing students to remain the authority
on their process and encouraged students to discuss
their ideas with each other at various points. Students
had a great deal of freedom to discuss their work with
others throughout the activity. 

Data Collection
All of the class sessions were videotaped to capture stu-
dent work in progress, including the conversations be-
tween the students and between the students and
myself. Students submitted a digital copy of their logo
along with a handout. The handout that students com-
pleted consisted of the following four questions regard-
ing their design process and their use of transformations: 

1.   What does your logo represent? How does it 
represent that? 

2.   For every transformation that you created, fill in the
following table. You may use an additional paper if
you need more space. (In the table, students named
each transformation, recorded the pre-image,
image, and explained relevant properties.) 

3.   How did you design your logo? Walk me through
the process you used. 

4.   What ‘aha’ moments or discoveries did you have
while creating the logo?

The presentations students made included some of
the same information; however, the students were asked
to explain specifically: 1) the theme of the logo, 2) trans-
formations they used to create the logo, and 3) their fa-
vorite part of the task, something that was challenging
for them, and anything they would change if they had
additional time to revise their work.

Narrative of Logo Design Project

In this section, I will discuss how students interacted
with the design task. First, with a summary of students’
engagement, followed by samples of student work and
conversations that took place during the task. 

Progression of the Design Task
Upon receiving the task, students generally took three dif-
ferent approaches. One group began by exploring logos
found through searching Google Images to brainstorm
ideas for their design. This inspired some students to mod-
ify an existing logo; for others, it helped them consider at-
tributes of logos in general. A second group took time to
create a mental picture of what their logos would look like
before using GeoGebra to create the logo. The third group
immediately engaged in exploratory trial and error, playing
with the various DGS tools to see what logos they could
create. Video recordings from the class showed many stu-
dents restarting their logos at least once on the first day.
Some of these students reused similar concepts in their
next design, while others pursued entirely different direc-
tions after discarding their initial work.

During the first day, many students indicated that
they began creating their logos before knowing what
their logos represented. The video recordings revealed
that students had a general conception of what a logo is,
and they used this conception to guide their design. In-
stead of creating detailed arrangements or including
random shapes that did not connect to each other in
some way, the students generally focused on creating a
cohesive design of transformations that approached
their general conception. As they developed and refined
their logos over the three days, students seemed to use
their personal experiences with logos to determine what
their creations represented. Interestingly, these students
then created their own companies that matched their
logos instead of matching their logos to existing compa-
nies. Once they decided what their logos represented,
they considered different aspects of their logos and how
these aspects provided meaning.

During the task, every student focused on how to use
DGS to create the logo to fit their self-imposed expecta-
tions of what the logo could be. Some students used the
grid provided in the DGS to create transformations,
while others utilized the functions in the software in-
stead. The videos revealed that as the students worked,
they were also curious about what their classmates were
creating; they looked at each other’s screens, shared
ideas, assisted each other with the DGS tools, and lis-
tened to nearby conversations. 
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Towards the end of the first day and throughout the
second day, students began adding finishing touches to
their logos; these included hiding points, lines, and la-
bels in the DGS to make the logo cleaner and adding
color to various shapes to make the logo stand out. Al-
though I showed the students how to include these de-
tails, they had the autonomy to decide whether to use
them. The students were not required to add these ad-
ditional cosmetic elements; some students decided not
to include these while others were not able to due to the
time constraints. From here, students used their com-
pleted logos to fill out the reflection handout and
bounced ideas off each other as they figured out how to
record their design process. I encouraged students to
sketch the pre-images and images to aid them in writing
about transformations.

On the third day, every student presented their own
logo to the class. There was a great deal of enthusiasm
and excitement regarding the visual appeal of the logos.
While sharing, students typically noted an area of im-
provement in their presentation. The students were also
given opportunities to ask presenters about their logos. I
asked questions to prompt discussion of particularly in-
teresting characteristics of the students’ design processes
as well as to highlight noteworthy ideas. Each student
enjoyed the support, enthusiasm, praise, and applause of
their peers at the conclusion of the presentation. 

Conversation About Student Designs
The sample work and conversations included below are
chosen to highlight students’ engagement with the de-
sign process. All student names in this paper are pseu-
donyms to protect student privacy. Two students made
logos that incorporated their names; the data from their
logos are included in the conclusions, but their logos are
not pictured to maintain anonymity.

Leith’s Star. The conversation in Figure 2 occurred on
the first day of the project when Leith wanted to create
a five-pointed star using rotations. In this conversation,
Leith is trying to connect his conceptual knowledge of
rotations to the procedural knowledge needed to trans-
form a shape in DGS. Similar conversations about con-
necting the conceptual and procedural understandings
of transformations occurred throughout, with a main-
tained focus on applying mathematics to achieve an aes-
thetic goal. Leith later assisted a peer in overcoming the
same challenge.

Alana’s Egg Brand. Alana had to make a decision about
which transformation was the most appropriate to create
rays for her “sunny side eggs” brand, which shows the
“egg cracking at the break of dawn....which the sun is
beaming (squiggles)” as she wrote in her reflection. The
conversation and her work were captured on video

Figure 2

Leith Determining the Angle of Rotation

   Leith (L):    Asks how to rotate a shape to create a five-
pointed star.

Simon (S):    “There’s a way to figure out the angle of
rotation on a five-pointed star.”

              L:    “How is that?”

              S:    “How many degrees are in a circle?”

              L:    “360”

              S:    “360 degrees, think of a rotation, you want to
make it a complete circle, right?”

              L:    “Yeah”

              S:    “So how many degrees would you make this
rotation if it is 360 total?”

              L:    “360 divided by 5.”

              S:    “Yeah”

              L:    (Thinking)

              L:    “So that would be, 70 something.”

Pre-image

Image
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while she determined which transformation
would be most fitting to create the sunbeams.
This is another example of mathematizing a
problem to reach an aesthetic goal.

In her presentation, Alana explained that
“my favorite part was probably doing the
squiggles. Um...I don’t know why. Like all
these are the same (pointing at the squiggles)
except these two because I couldn’t get them
perfectly in the center, so, like, I had to redraw
two of them. Or (actually) just one of them,
and I reflected it.” It is notable that the squig-
gles, although challenging, were her favorite
part.

Problematizing the Task
The logo design task emphasized aesthetics,
with mathematics serving as the means to cre-
ate them. In their reflections, most students
recognized one or more mathematical prob-
lems or challenges they overcame to create the
logo in DGS. Two student reflections appear
alongside their completed logos in Figure 4. I
chose these to illustrate how students used
transformations explicitly and implicitly to
create their logos.

Figure 3

Alana Identifying the Appropriate Transformation

 Alana (L):    “It’s like an egg brand.” (Top picture)

Simon (S):    “To go on with the theme?”

             A:    “Yeah, and this is like the light, basically. But
I need to make this (squiggles) better.”

              S:    “Could you make one really, really good one
and just use transformations to make the
rest?”

             A:    “That sounds good.”

              S:    “Yeah? Which transformations?”

             A:    “Um, translation? … or rotation?”

              S:    “So if you translate, you start with a squiggle
on the right, you could translate it down
here, it would still be a squiggle here. 
So which one would be more sun like?
Translations or rotations?” (Bottom picture)

             A:    “Rotations.”

              S:    “Yeah!”

Figure 4

Problematizing the Logo Design Task

Jacob: “First, I had to find
the best size for the circle.
Then I had to find where to
translate the circles to. This
took the longest because it
was hard to find where it
would fit best. I figured out,
and then once I finished the
side, I reflected it to make
the other side match.”

Haley: “I made a circle big
enough for the mountains I
was going to put. I pressed
segment lines, and from
there I made the middle, 
so the main mountain, and
from there I was making 
the 2 smaller mountains 
on both sides of the main
mountain. After making
those 3 mountains, I started
making smaller triangles 
of different sizes facing
different directions into the
mountains so it wouldn’t
look so empty…”
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Results from Student Work

The Role of Transformations in the Design Task
In their reflections, students identified and described the
transformations they used to create their logo. From these
reflections and video recordings of conversations, I iden-
tified why students used the particular transformations
they did. Some students, including Leith and Alana, real-
ized that they needed to use rotations to create the sym-
metry they were looking for in their logos. Others,
including Jacob, found that translations and reflections
helped them to move objects across the screen in different
ways. Haley was one of many who applied dilations and
translations to make larger and smaller figures. This
demonstrates that students learned and understood
which transformations were appropriate to reach their ob-
jectives in the aesthetics of their logo. Students did not use
each transformation equally as shown in Table 1.

Prototyping Within the Design Process
Students regularly engaged in prototyping throughout
the task. The students’ prototyping actions captured in
the video were categorized in Table 2 based upon their
intent, as either throwaway or evolutionary (Fountain,
1990), and their purpose, as generative or evaluative
(Rothenberg, 1990).

One third of students created a throwaway prototype
with the intent and understanding that they were simply
generating ideas, and that their first design may not be
their final logo. The students who began by researching
logos or experimenting in GeoGebra engaged in genera-
tive prototyping; they were developing ideas of what to
create before moving into DGS (Fountain, 1990). This is
a stark contrast from traditional mathematical tasks
where the objective is to obtain a correct solution. In these
tasks, students are comfortable with experimenting and
tolerating setbacks, which is consistent with design
thinking (Rothenberg, 1990). 

Due to the eventual evaluation of students’ work (stu-
dents were required to turn in a product that they pre-
sented and I assessed), all students naturally transitioned
to evaluative prototyping by the end of this activity
(Rothenberg, 1990). Many shared plans to revise their
logos if they had additional time. Additionally, ninety
percent shared at least one insight they had while creat-
ing their logos. Only two students denied having any in-
sights; the videotaped conversations with these two
students reveal otherwise; however, these students did
not view those moments as significant in their reflections. 

These results show that students engaged in proto-
typing as a method to help them incorporate transfor-
mations within their logos, even if their awareness of the
design process varied. The data also revealed that stu-
dents can engage in mathematics and graphic design si-
multaneously and that their logo designs influenced the
mathematics they chose to incorporate within their
logos. 

Conclusion

The Standards for Mathematical Practice establish the
mathematical and critical thinking skills that all students
should develop while learning grade-level content
(CCSSI, 2010). The current modeling standard can be ex-
panded to encompass all types of mathematical design
thinking, including prototyping. By expanding this, we
can create a space for the attributes and language of
mathematical design thinking in the classroom and pro-
mote student autonomy and creativity in the learning
process. Through mathematical design thinking, stu-
dents can engage in cross-curricular activities from a
mathematical perspective, and these activities can in-
clude but are not limited to graphic design.

Teachers who wish to integrate mathematical design
thinking within their classroom must provide students

Transformations                     Reflections                        Dilations                      Translations                      Rotations

Percentage of Students                  77%                                 45%                                32%                                 32%

Table 1

Percentage of Students Who Used Each Transformation Within Their Logo

Design Thinking Actions            Throwaway                 Evolutionary                     Generative                     Evaluative

Percentage of Students                   33%                             100%                                52%                              100%

Table 2

Percentage of Students Engaged in Each of the Prototyping Actions
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with complex situations, contexts for students to apply
and expand their understanding of mathematics. In
mathematical design situations, teachers must create
and maintain a classroom environment where students
have ownership over their work and are comfortable en-
gaging in challenge, intellectual risk, and productive
struggle. When experiencing the design process through
prototyping, students can learn that what initially ap-
pears to be a setback is instead a valuable conceptual
gain that they may have otherwise not experienced.

Teachers can also do more to help each student be
aware of and express their mathematical design thinking
both verbally and in writing. One way of doing this is to
teach the language of prototyping (generative, evalua-
tive, throwaway, and evolutionary) so students can 
identify how their thinking and work fits within math e -
matical design (Rothenberg, 1990; Fountain, 1990). Stu-
dent reflections provide insights, but their clarity and
detail are dependent on students’ abilities to verbalize
or write their ideas after completing a design task and
what the students view as significant. By recognizing the
merits of their work and ideas through the language of
prototyping, students may find themselves better able
to record their design processes in detail. 

Design tasks must also be developed and imple-
mented to honor the creativity that emerges during the
design process, which makes each student’s work unique.
Thus, incomplete and complete work must be able to
exist side-by-side and elevated as equally valued contri-
butions, communicating to students that their work is
important and valued at all stages within the design
process. 

Implications for Further Research
Research is needed to develop additional methods that
engage students in mathematical design thinking and to
further investigate the connection between mathematical
design thinking and mathematical habits of mind. In
conjunction, research of this type would provide addi-
tional support for teachers to expand on the mathemat-
ical modeling that already occurs within classrooms to
include all types of mathematical design thinking, in-
cluding prototyping. Consequently, this can strengthen
student learning and understanding of mathematical
concepts and deepen students’ awareness of the design
process. Such an expansion provides an opening for ed-
ucators to develop diverse and innovative learning op-
portunities that empower students to be creative, take
risks, and problem solve, thus supporting students to be-
come active doers of mathematics.  
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ABSTRACT in this paper, we discuss the utilization of an innovative learning tool, the Sphero
BOLT robot, in a 10-day algebra-based mathematics education course for graduate students.
Students created routes for their BOLTs to travel and determined ways to measure the distance,
rate, and time of their robots’ movements. The student prompt, sample student work, class time
considerations, and sample student-written reflections about the activity are detailed, in addition
to implications and suggestions for teacher educators.

KEYWORDS algebra, robots

Using the Sphero BOLT to Engage Students Mathematically

Introduction

The use of technology in a mathematics classroom is a
vital component of learning (NCTM, 2000), and the
available instructional technology changes drastically
from year to year. Utilizing STEM-based lessons with a
mobile application-controlled robot, such as the Sphero
BOLT (Sphero, Inc. 2019), to teach mathematics concepts
is also becoming more popular (Dunbar & Rich, 2020).
Robotic activities have led to science, technology, engi-
neering, and mathematics (STEM) learning engagement
improvements (Kim et al., 2015). The use of robotics has
been shown to have positive effects on students’ spatial
ability (Coxon, 2012) and their interpretation of graphs
(Mitnik et al., 2009). According to Ioannou and Bratitsis
(2016), “problem solving, literacy, creativity, and moti-
vation are positively influenced when children access
technology in their learning environments” (p. 3). 

Robots are most commonly used with K-12 students
during summer programs, after-school programs, elec-
tive courses, and robotic competitions (Altin & Pedaste,
2013; Barker et al., 2010; Larkins et al., 2013; Shepherd et
al., 2019; Williams et al., 2007).  In the classroom, the re-
search on particular use of the Sphero BOLT is limited
(Dunbar & Rich, 2020); however, the Sphero SPRK robot
has been used in the kindergarten classroom for speed-

related STEM activities (Ioannou & Bratitsis, 2016).
Therefore, teacher educators should understand how
such technology can be incorporated into their mathe-
matics education courses so that they can prepare future
and current teachers to use it in their classrooms. Addi-
tionally, there exists limited research on the use of robots
in college mathematics classrooms. Therefore, the pur-
pose of our work is to help fill this gap and show how
the Sphero BOLT was utilized in a college mathematics
education class. 

Accordingly, we detail the use of pre-built BOLT ro-
bots in a graduate mathematics education class offered in
the summer, which focused on teaching algebra topics
covered in middle school to current and future mathemat-
ics educators. In this course, four graduate students, two
pre-service and two in-service teachers completed two al-
gebra-based projects using the Sphero BOLT. More specif-
ically, in reference to mathematics standards, we detail
the first classroom project (see lesson prompts in the Ap-
pendix) utilizing CCSS.MATH.CONTENT.6.EE.C.9: Use
variables to represent two quantities in a real-world problem
that change in relationship to one another. In particular, the
graduate students were examining the relationships
among distance, speed, and time. Students were re-
quired to keep one variable constant and look at the con-
nections between the other two variables. Through this
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classroom episode, insight into how teacher educators
and future teachers alike can utilize the BOLT in their
respective classrooms are discussed. 

About the Sphero Bolt

Figure 1 shows an image of the Sphero BOLT, a grape-
fruit-sized sphere with a durable transparent shell that
has been recently introduced to the public. 
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Figure 1

The Sphero BOLT robot

The BOLT relies on wireless charging, so there are no
wires or openings on the exterior, and the motors and
display are balanced, protecting the internal electronics.
The pre-built, self-contained structure of this robot al-
lows for teachers to utilize it in a variety of lessons; for
example, it can be used in drawing and tracing activities
in which the BOLT can be covered in wet paint and then
driven or programmed to follow specific paths. Such an
activity enables students to explore the movement of the
robot in relation to their commands. The BOLT can be
used at different grade levels since users can interact
with the robot in a variety of different ways. One such
way is the use of a touch-based mobile application that
controls the robot’s movement through blocks of code
that can be dragged and dropped. 

The drag-and-drop interface provides a program-
ming experience similar to such programs as Scratch
(2020). This allows students to drag “code blocks,”
which signify logical structures, input controls, and out-
put controls into different arrangements, then they can

insert values for pre-built variables to programmatically
control actions. Using these pre-made blocks of code
helps students focus first on the mathematical concepts
at hand and second on the coding aspect of the lesson.
Additionally, while the robot features 360-degree mo-
tion, the remote-control application also allows users to
explore the concepts associated with labeling 0 degrees
as directly forward and 180 degrees is directly back-
ward. A student could then drive the robot using the ap-
plication by dragging their finger from a designated
center point in different directions of motion. In the les-
son we describe, graduate students were able to explore
how the robot could be used to teach mathematical con-
cepts using both features of this interface.

Class Specifics

The participants described in this classroom episode
consisted of four graduate students enrolled in a 10-day
summer mathematics education workshop at a univer-
sity in the south-central United States. The students met
for four hours each day for two weeks. The workshop
for future and current teachers focused on middle school
algebra-based mathematics standards. The use of tech-
nology in mathematics education was a central focus of
the class. Therefore, the instructor demonstrated how to
use graphing calculators, Vernier motion sensors (Blue-
tooth enabled sensors that measure distance/speed/time),
algebra-based iPad-based applications, and Sphero BOLTs
to teach algebra topics.

Before the work with robots, the students worked for
approximately 60 minutes with Vernier’s motion sensors,
similar to Texas Instruments’ calculator-based rangers
(CBRs™), to develop a deeper understanding of move-
ment in relation to distance/time graphs. The motion sen-
sors were placed in front of students to measure student
movement toward and away from the sensor. Graphs
were produced on students’ iPads and were discussed in
detail. 

To continue the discussion of distance/time/speed re-
lationships, the instructor introduced students to the
Sphero BOLT. The participants also had approximately
30 minutes of individual class time to familiarize them-
selves with the robot and its associated technology. The
students could either use the application to move the
robot with their finger and/or use blocks of code to move
the robot along the floor. This exploration was open-
ended; the instructor provided students with a great
deal of freedom with respect to how to initiate move-
ment of the BOLTs. This time was necessary for students



to familiarize themselves with the technology as well as
alleviate any anxiety associated with using a robot for
the first time. The instructor circulated the room to an-
swer any questions students might have about the ap-
plication and robot. Students were able to use the Sphero
Edu (Sphero Inc., 2019) application with ease and were
able to move the robots once they were connected (Sam-
ple instructions on how to move the BOLT are provided
under Step 2 in the sample lesson prompt at the end of
the article.)

Lesson Details

Students then completed the BOLT-based project in
groups of two over the span of 90 minutes. Group work
and collaboration was encouraged throughout the activ-
ity. The instructor of the course has often utilized chil-
dren’s literature as a theme in her mathematics education
classes to help future teachers see the value in using chil-
dren’s books to contextualize and teach mathematics
(Jao & Hall, 2018). To demonstrate this and provide a
context for the current lesson, the instructor utilized Kate
Toms’ (2009) book The Itsy-Bitsy Spider. 

In the Sphero project, students listened as the instruc-
tor read parts of the story to provide context for the activ-
ity. Similar to the spider in the story who traveled out a
waterspout and around town to get back home, the stu-
dents were asked to create a story about a journey that the
BOLT robot took. Although the students were free to pro-
duce paths of their choosing, they were required to incor-
porate at least three stops, as well as paths that were both
straight and curved. These requirements
were included to increase the cognitive de-
mand of the activity. 

Students created a path on sheets of
poster paper and a corresponding storyline
for their BOLT robot. They then utilized the
Sphero block coding feature of the Sphero
education application to generate blocks of
code to move their robots along the path
described in their storyline. The instructor
pointed out to students that they only
needed to repeat two specific lines of code,
“roll __ degrees at __ speed for __ sec,” and
“STOP” to be successful in moving their
BOLTS, but left open the opportunity for
students to be more creative with these
commands, such as including words and
colors to their robot through different cod-
ing schemes. 

Of the two required lines of code, the first corre-
sponded to rolling their robot in a certain direction with
a designated speed and time. The second line of code
made their robot stop. Even though there were only two
lines of unique code required, students had to determine
which mathematical values to input in the code each
time to move the robot correctly. Students could use var-
ious devices, such as tape measures to measure distance,
their phones to measure time, and protractors to meas-
ure angles. 

Sample Work

Both groups created paths that detailed their robot going
through a series of straight and curved routes. As an ex-
ample, Figure 2 shows the path designed by one group,
wherein their BOLT robot left home, got caught in traffic,
parked, went to class, traveled to a restaurant to eat, and
then returned home. 

All students initially struggled with determining the
correct values for direction, time, and speed that would
make their robot move down each of their predeter-
mined paths. Students also needed practice using tools
such as protractors and tape measures. Students often
moved their robot off-course and adjusted their values
for direction, distance, time, and speed. After some ex-
ploration, both groups of students successfully produced
working code. Perhaps more important to their learning
and future teaching, the student groups were able to
wrestle with relationships among the coding structure
and the distance, speed, and time of the robot. 

Figure 2

Sphero BOLT on sample student route

Note: This sample of student work was selected since they included
some of the optional features, such as changing the color of their BOLT
and writing phrases on their BOLT when at various stops.
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Creating correct direction headings for the BOLT was
difficult for some students. For example, a heading of 0
degrees (with the blue BOLT alignment light facing the
person) would move the BOLT forward, and a heading
of 180 degrees would move the BOLT backward. Stu-
dents were more familiar with relying on traditional x-
and y-coordinates for direction. However, the remote-
control application for the BOLT robot requires direction
headings to be in terms of angle measures and mimics
how a person perceives their orientation in space. 

For fun, the group that created the paths in Figure 2
also added color (e.g., red) to their robot and phrases
(e.g., the word WAITING) that would scroll across the
LED screen of the robot to simulate when their robot
was waiting in traffic. Figure 3 shows a code created by
the students.

Student Reactions

In a written reflection about the activity, all students
commented on how they enjoyed working with the
BOLTs. More importantly, students also commented on
how this activity could help their future students learn
mathematical concepts such as distance/time relation-
ships within a relatable common context. One student,
who was uncomfortable with technology in general,
commented: 

I am severely allergic to technology, so I was un-
comfortable at first. I warmed up a bit during the
first activity (playing around with BOLT).…Stu-
dents could benefit from Sphero Activities…To
see a 1D graph on paper vs. seeing a graph that
they constructed through an activity that they cre-
ated will solidify concepts and aid them in mak-
ing connections to real-world activities. Really
cool stuff. Thanks for stretching me today and get-
ting me out of my comfort zone. 

Another student commented on the usefulness that
she sees in BOLT in the mathematics classroom:

I loved today’s activities!! The problem-solving
skills required would be great to workout any-
one’s brain! I had fun working with the BOLTs
while also using angles and speed variables to
learn. I think this would be a good introduction to
distance and velocity.

In a future lesson of this type, it would be meaningful
to expand upon this students’ comment and demon-

strate how this activity could be used as an introduction
to speed, time, distance, and velocity. Also, in the cur-
rent lesson, the students engaged in making hypotheses
and then testing them; however, in the future it would
be useful to model for the current and future teachers
how to help their students formalize such conjectures.

Conclusion 

Even though students initially struggled with creating
correct distance, speed, and heading values to make
their BOLTs move, they were ultimately successful. This
productive struggle on the part of the pre-service teach-
ers provides a context for them to use this meaningfully
in their future classrooms. If given to an appropriate set
of students with the correct support, the pre-service
teachers could engender the same struggle and learning
they experienced in this activity. Additionally, since
only two unique lines of code are required to move the
robot successfully, the aspect of this assignment that re-
quires coding is rudimentary enough, and foreign
enough to provide students who are new to coding an
exposure to such concepts. Therefore, access to the
mathematical and computer scientific concepts of such

Figure 3

Sample student code
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a lesson permit student engagement at a wide range of
educational levels. 

An important part of this lesson was the open-explo-
ration time given at the beginning for students to famil-
iarize themselves with the BOLT. This allowed them to
explore intuitive notions of the robot’s movement in
comparison to the coding structure. However, in future
lessons of this type, the instructors may include guided
explorations, such as providing guidance for basic, hor-
izontal, or vertical paths before having them move on to
more complicated ones. The instructors should consider
further the space in which this activity is taking place
since it was easy for the BOLTs to collide with other ob-
jects or fall off tables. Another consideration for a future
lesson may be the inclusion of a worksheet where stu-
dents could document their trials and errors and provide
explanations for their successes and failures. This could
help students regulate their progress as well as have a
valuable record of what mathematical learning was tak-
ing place. Lastly, prior to the lesson, a review of using
appropriate tools such as protractors and tape measures
may help all students focus on new mathematical con-
cepts instead of recalling prerequisite ones. 

An important aspect of the lesson that is particularly
meaningful for future teachers is the modeling by the in-
structor of best practices for developing conceptual un-
derstanding. The instructors demonstrated how to
generate and maintain discourse with students to help
develop mathematical understanding, particularly with
respect to the relationships of distance, rate, and time.
The instructors modeled how to circulate the classroom
during the activity and ask probing questions. Addition-
ally, the instructors modeled how to ensure the activity
was student-centered and student-driven by providing
structure and guidance when needed, but also providing
independence when needed as well. 

This activity may interest mathematics teacher edu-
cators since it explores the use of an innovative technol-
ogy in the teaching of mathematics. Although the
students in the course were familiar with concepts re-
lated to distance, rate, and time, they were unfamiliar
with how the technology introduced could be utilized to
teach these concepts. As a result, students could authen-
tically use these new experiences to provide engaging
activities for their future mathematics students. Addi-
tionally, pre-service teachers benefit from engaging in
innovative problem-solving activities where best prac-
tices are modeled by seasoned instructors. Activities
such as the one discussed in this paper also provide ev-
idence that an interdisciplinary approach is possible in
certain settings. The current lesson provides future

teachers with an example of how to combine innovative
technology; mathematical and computer scientific con-
ceptual learning; and even literature into one lesson. 
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Appendix

Activity

Step 1: Using the Itsy Bitsy Spider’s adventure theme,
create your own storyline and journey for a character of
your choosing. Your character must travel to at least
three places, with at least one path being curved and one
being horizontal. Sketch your maze in the space provided.
Once finalized, draw your path on the poster board and
label each stop. (Remember, you must have at least 3 stops
with at least one curve path and at least one horizontal
path.)

Step 2: Now, using your Sphero BOLT and the Sphero
Edu app, create code to move your BOLT through your
maze. 

Directions for using the Sphero app: Tap on the Sphero Edu
icon. Go to My Programs, the plus icon, and choose
Blocks code program type and the Sphero BOLT robot.
Click Create. You can now drag and drop code onto your
screen. (NOTE: The only two lines of code needed are to
repeat two specific lines of code, “roll __ degrees at __
speed for __ sec,” and “STOP” to be successful in mov-
ing BOLT, but you can get creative with your code by
adding words and colors to your robot through different
coding schemes.) When you are ready to test run BOLT,
press START. The program will look for your BOLT to
connect (make sure Bluetooth is on) and then run
through your code. Have fun!!

In the space provided, list your lines of code and values.
By each line of code, explain why you chose the specific
degrees, speed, and seconds you selected.
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                      12
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Table 2
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among Japanese sample
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